
APPLICATION NOTE
www.onsemi.com

© Semiconductor Components Industries, LLC, 2022

July, 2024 − Rev. 1
1 Publication Order Number:

AND90162/D

Battery Fuel Gauge [Smart LiB Gauge] for 1-Cell
Lithium-ion/Polymer with LC709209F

AND90162/D

LC709209F is a Fuel Gauge for 1−Cell
Lithium−ion/Polymer batteries. It is a part of our Smart LiB
Gauge family of Fuel Gauges which measure the battery
RSOC (Relative State Of Charge) using its unique algorithm
called HG−CVR2. The HG−CVR2 algorithm provides
accurate RSOC information even under unstable conditions
(e.g. changes of battery; temperature, loading, aging and
self−discharge).

This application note will explain how to initialize various
parameters for the selected battery to start a higher accuracy
gauging. Users can set various registers based on their
application requirement using the notes, guidelines and
examples given in this note. Sample program codes
explained at the end of the note will provide various
guideline on how this device communicates with the host
side application processors.

Figure 1. An Example of an Application Schematic using LC709209F

Application

LC709209F

Battery pack

Application
processor

B
at

te
ry

 p
ro

te
ct

io
n

co
nt

ro
lle

r

PACK+

PACK −
N

T
C

 th
er

m
is

to
r

T

V
S

S

REG

TSENSE

V
D

D

SCL

SDA

ALARMB

10
 k
�

10
 k
�

10
 k
�

1 �F

2.2 �F

SCL

SDA

ALARMB

V
D

D
V

S
S

Power
management IC

Charger IC

VBAT

IN

VSS

VSS

OUT

System−VSS

System−VDD

VBUS
VBUS

RESETB

10
 k
�

1 �F

RESETB

http://www.onsemi.com/

AND90162/D

www.onsemi.com
2

Application Circuit Diagram
Figure 1 shows the application circuit diagram for

LC709209F. It is recommended that a TSENSE thermistor
is placed inside the battery pack or in contact with the battery
to measure the battery temperature. The application
processor can control the fuel gauge with I2C
communication, receive an alarm and reset it directly using
the RESETB pin. The fuel gauge can also reset itself with the
built−in reset circuits, so it is possible to disconnect the
RESETB pin from the processor. In that case, connect the
RESETB pin to the battery’s positive pin without a resistor.

Evaluation Tools

LC709209FXE−01−GEVB Evaluation Board
An evaluation board with a GUI controller is available to

evaluate LC709209F. The board features a USB−IF
microcontroller and LC709209F. If a battery is connected to
the board and then connected to a PC using a USB cable,
users can read and write any registers of the LC709209F, and

log the cell temperature, cell voltage, RSOC and some other
register values using the GUI. The logged data can be saved
as a text file. Please refer to the documents given in Table 1
for further details about the board.

STR−SMARTLIBGAUGE−GEVK Smart LiB Gauge
Automatic Support Tool (EOL)

The Smart LiB Gauge Automatic Support Tool
automatically evaluates the battery parameters for
LC709209F. The battery parameters for the device are
explained as the adjustment parameter (APA) and battery
profile in the next section. The optimized battery parameters
for a target battery will improve the RSOC accuracy. For the
evaluation, the tool discharges a target battery using the
on−board programmable load and measures the cell voltage
and temperature.

The tool works in the Strata Developer Studio�. Please
refer to the documents in the Strata Developer Studio for
further details about the tool.

Table 1. EVALUATION BOARDS AND DOCUMENTS FOR THE TARGET DEVICE AND BATTERY

Evaluation Board Target Device
Battery

Type Related Documents

LC709209FXE−01−GEVB LC709209FXE−01TBG 01, 04, 05,
06, 07

LC709209FXE−01−GEVB_Test Procedure.pdf
LC709209FXE−01−GEVB_SCHEMATIC.pdf
LC709209FXE−01−GEVB_GERBER.zip
LC709209FXE−01−GEVB_BOM.pdf

STR−SMARTLIBGAUGE−GEVK (EOL) STR−SMARTLIBGAUGE−GEVK_USER_GUIDE.PDF
STR−SMARTLIBGAUGE−GEVK_SCHEMATIC.PDF
STR−SMARTLIBGAUGE−GEVK_BOM_ROHS.PDF
(Note 1)

1. There are other related documents in the Strata Developer Studio.
Link to related documents: https://www.onsemi.com/products/power−management/battery−management/battery−fuel−gauges/LC709209F

Parameter Initialization
In order to start the RSOC measurement with this device,

you must initialize some basic parameters in advance.
Table 2 shows the parameters and the corresponding register
names with the command code to set them individually. The
parameters specified as Mandatory in Table 2 are the basic
parameters required to measure the RSOC. Optional
parameters can be initialized if the user’s application
requires the given functionality. The detailed method on
how to set the required parameters is given below.

Battery Profile (0x12)
The device is installed with five types of Battery profiles.

Users must select an appropriate profile for their

applications based on the type of battery used. Please check
the battery nominal voltage and charging voltage against
Table 3 and select the Battery Type where either of them
matches. To set the Battery Type to be used, write the value
specified in Table 3 to Change of The Parameter register
(0x12) of the Fuel Gauge. For example write 0x01 to Change
of The Parameter to select the Battery Type−04.

Users can also select the suitable battery profile by using
the Smart LiB Gauge Automatic Support Tool to calculate
the optimized parameters. Please refer to the user guides in
the Strata Developer Studio for the details.

http://www.onsemi.com/
https://www.onsemi.com/products/power-management/battery-management/battery-fuel-gauges/lc709209f

AND90162/D

www.onsemi.com
3

Table 2. PARAMETER VS REGISTER

Command
Code Register Name Parameter

Mandatory or
Optional Unit

0x06 TSENSE Thermistor B B−constant of a TSENSE thermistor Mandatory K

0x0B APA Adjustment parameter for RSOC measurement Mandatory −

0x0C APT Delay time to temperature sampling Optional −

0x12 Change Of The Parameter Battery profile Mandatory −

0x1C Termination Current Rate Termination current rate at the end of charging Optional 0.01C

0x1D Empty Cell Voltage Empty Cell Voltage Optional mV

Table 3. BATTERY PROFILE VS REGISTER

IC Type Battery Type
Nominal / Rated

Voltage
Charging

Voltage
Number of

The Parameter (0x1A)
Change of

The Parameter (0x12)

LC709209F 01 3.7 V 4.2 V 0x1001 0x00

04 UR18650ZY (Panasonic) 0x01

05 ICR18650−26H (SAMSUNG) 0x02

06 3.8 V 4.35 V 0x03

07 3.85V 4.4V 0x04

APA Value to Improve RSOC Accuracy
APA values are parameter to fit a pre−installed battery

profile into target battery characteristics. They are set in
APA register (0x0B). Appropriate APA values for the target
battery will improve RSOC accuracy. Users can select either
of the two following approaches to obtain the APA value.
• Design capacity to typical APA conversion table

• Smart LiB Gauge Automatic Support Tool

The Design capacity to typical APA conversion table is
Table 4. Typical APA values can be taken from the design
capacity of the cell in the table. Use capacity per 1−cell of the
table if some batteries are connected in parallel. Calculate
APA values using linear supplement if your required design
capacity is not shown in the table. See eq. 1 for how to
calculate the APA value manually. An example for a
1500 mAh battery with corresponding DEC value for their
HEX is also shown.

APA value � Lower_APA � (Upper_APA � Lower_APA)

(eq. 1)�
Capacity � Lower_Cap.

Upper_Cap. � Lower_Cap.

Calculation example for a 1500 mAh Battery Type−01.

APA value � 45 : 0x2D � (58 : 0x3A � 45 : 0x2D)

(eq. 2)

� (1500 � 1000)�(2000 � 1000) � 52 : 0x34

The upper 8 bits and the lower 8 bits of the APA register
correspond to the charging and discharging adjustment
parameters respectively. See Table 5 for the bit
configuration. Table 4 shows the case where both the upper
and lower bits have the same value. For example, set the
value in the APA register to 0x0D0D for an APA value of
0x0D.

The Smart LiB Gauge Automatic Support Tool
automatically evaluates the optimum APA by measuring the
target battery. The evaluated APA will improve the RSOC
accuracy than the APA from the conversion table. Please
refer to the user guides in the Strata Developer Studio to
evaluate APA with the tool.

http://www.onsemi.com/

AND90162/D

www.onsemi.com
4

Table 4. DESIGN CAPACITY TO TYPICAL APA CONVERSION TABLE

Design
Capacity / Cell

(Note 2)

APA[15:8], APA[7:0] Design
Capacity / Cell

(Note 2)

APA[15:8], APA[7:0]

Type−A01 Type−06 Type−07 Type−04 Type−05

50 mAh 0x13, 0x13 0x0C, 0x0C 0x03, 0x03 2600 mAh 0x10, 0x10 0x06, 0x06

100 mAh 0x15, 0x15 0x0E, 0x0E 0x05, 0x05

200 mAh 0x18, 0x18 0x11, 0x11 0x07, 0x07

500 mAh 0x21, 0x21 0x17, 0x17 0x0D, 0x0D

1000 mAh 0x2D, 0x2D 0x1E, 0x1E 0x13, 0x13

2000 mAh 0x3A, 0x3A 0x28, 0x28 0x19, 0x19

3000 mAh 0x3F, 0x3F 0x30, 0x30 0x1C, 0x1C

4000 mAh 0x42, 0x42 0x34, 0x34 −

5000 mAh 0x44, 0x44 0x36, 0x36 −

6000 mAh 0x45, 0x45 0x37, 0x37 −

2. Use capacity per 1−cell if some batteries are connected in parallel.

Figure 2. Typical APA of Type−01/06/07

Table 5. BIT CONFIGURATION OF APA REGISTER
(0X0B)

Bit Function

APA[15:8] APA value for charging adjustment

APA[7:0] APA value for discharging adjustment

B Constant of NTC Thermistor (0x06)
This device can support 10 k� NTC thermistor, and this

section explains how to find the appropriate B constant value
to set in the Thermistor B register (0x06). Cell temperature
(TSENSE) is an essential parameter used for the battery
measurement. You must set an appropriate value in the
TSENSE Thermistor B register (0x06) unless the
application processor provides the battery temperature
directly to this device (using I2C mode).

The device calculates temperature assuming that the
resistance value of the thermistor follows eq. 3.

R � R0 � exp B(1�T � 1�T0)
(eq. 3)

R: Thermistor resistance in T (K)
R0: 10 k�
B: B constant (K)
T: Temperature (K)
T0: 298.2 K (25°C)

Table 6 shows an example for the relationship between the
resistance and temperature of an available 10 k� thermistor.
If similar values are given in the data sheet for the thermistor
used, please substitute the thermistor resistance at each
temperature into eq. 4 to calculate temperature.

T � 1 ��1�T0 � 1�B � ln(R�R0)	 (eq. 4)

Sample plots using eq. 4 are shown in Figure 3. The
horizontal axis shows the actual temperature and the vertical
axis shows the difference between the temperatures
calculated from the resistance value of a thermistor (eq. 4)
with the actual temperature. Three B constant values are
used to calculate the vertical axis. Select a B constant value
that minimizes the absolute value of the vertical axis in the
temperature range where RSOC accuracy is required. In
Figure 3, B constant = 3400 K will give higher RSOC
accuracy for the given range of temperature.

Another example is shown in Table 7. If only the
temperature range and B constant are specified in the
thermistor datasheet, select a B constant value that fits with
the user’s application temperature range so that higher
RSOC accuracy can be obtained.

http://www.onsemi.com/

AND90162/D

www.onsemi.com
5

Table 6. 10 k� NTC THERMISTOR EXAMPLE (1)

Temperature Resistance Temperature Resistance

−20�C 71 k� 30�C 8.3 k�

−10�C 44 k� 40�C 5.8 k�

0�C 28 k� 50�C 4.1 k�

10�C 18 k� 60�C 3.0 k�

20�C 12 k� 70�C 2.2 k�

Figure 3. An Example of Temperature Error which is
Calculated from a Thermistor Resistance

Table 7. 10 k� NTC THERMISTOR EXAMPLE (2)

R0 or R25

B Constant

25�C to 50�C 25�C to 80�C 25�C to 100�C

10.0 k� 3435 K 3474 K 3595 K

Thermistor Measurement Delay (0x0C)
This section explains about the APT (Adjustment Pack

Thermistor) delay and the behavior of TSENSE pin while
measuring temperature with an NTC thermistor. This device
optimizes the temperature measurement interval
automatically based on the battery current flow. The
measurement interval ranges between a few seconds to a
minute. 10 k� pull−up resistor is integrated with TSENSE
in the device as shown in Figure 4. This resistor is connected
to the REG supply only during temperature measurement.
The pin remains in a high impedance state except while
measuring the temperature. Figure 5 shows an example of
TSENSE waveform during temperature measurement.
When the voltage on TSENSE gets stabilized while the
thermistor is connected to the pin, the voltage on the pin is
measured for finding the target temperature. The pull−up
resistor automatically gets disconnected from REG power
supply after a successful temperature measurement.

The APT delay shown in Figure 5 is the time delay
between when REG power is supplied to the thermistors and
when voltage measurement begins. The APT register shown
in Table 2 is used to change the APT delay. APT delay is
calculated using eq. 5 based on the value set in the APT
register.

APT delay � 0.167 �s � (200 � APT) (eq. 5)

To improve the accuracy of temperature measurement, the
voltage on TSENSE must be stabilized before the
measurement starts. The APT delay parameter provides a
delay time for the system to wait for voltage stability. For
most applications, the pre−defined APT delay time in the
device is sufficient for voltage stability. However, in the case
of a battery pack example shown in Figure 6, the APT delay
must be considered. The capacitive element is placed in
parallel with the thermistor in the given example. It is
assumed that it will take a longer time for the voltages of
TSENSE to stabilize. It also takes a longer time to stabilize
at lower temperatures as thermistor resistance increases
when temperature decreases. Therefore, APT delay should
be considered according to the thermistor resistance at low
temperature.

Figure 4. TSENSE Port Block Diagram

ADC

REG

A
na

lo
g

F
ro

nt
E

nd

TSENSE

Regulator
VDD

T

T: Thermistor

Figure 5. TSENSE Pulse at 25�C (APT = 0x0190)

TSENSE

APT delay = 100 μs

http://www.onsemi.com/

AND90162/D

www.onsemi.com
6

Figure 6. An Example of a Capacitor Across the
Thermistor

Application

LC709209F

V
D

D
V

S
S

Battery Pack

A capacitor across a thermistor

PACK+

PACK−

TTSENSE

N
T

C
 T

he
rm

is
to

r

Design Capacity (0x18)
Design capacity or Typical capacity or Nominal capacity

can be found in the battery’s datasheet.

Termination Current Rate (0x1C)
This termination current rate is used to adjust RSOC

reporting so that 100% is reported at the end of the charging
period, or even before the charger finishes charging. There
are several factors that can hinder RSOC from reaching
100% (Full Charge Status), for example when the battery
charger varies the termination current. In general, reaching
the termination current is the condition to stop charging for
Constant Voltage (CV) lithium−ion batteries. In the CV
mode a lithium−ion charger decreases the charging current
continually as charging progresses, and stop charging when
the termination current is reached. Therefore an increased
termination current value will result in a reduction of the Full
Charge Capacity (FCC) at the end of the charging process as
shown in Figure 7. This register value adjusts the RSOC
reporting so that 100% is reported for such a reduced FCC.

Termination current is set for the charger or given in the
datasheet of the battery. Users should apply the maximum
current in them for this register. It can prevent RSOC
reporting from being less than 100% at the end of charge.

The termination current rate set in this register is
calculated by dividing the termination current with design
capacity. The unit of the calculation result is C. (i.e. when the
design capacity is 3000 mAh and the termination current is
150 mA, the termination current rate is 0.05C. In that case
the register value is 0x05, since the unit of the register is
0.01C.) The Fuel Gauge only supports 0.02C or higher
termination current rate. Set values of 0.02C or higher for
lower termination current rates.

Figure 7. Termination Current and Full Charge
Capacity

Empty Cell Voltage (0x1D)
The lowest cell voltage that the application requests. The

lower side of RSOC (0x0D) is adjusted by this value. Refer
to the RSOC rescaling section.

FUNCTIONAL DESCRIPTION

Get Initial RSOC after Power−on Reset
This device starts the initialization sequence

automatically after both of the power−on reset and the
RESETB pin are released. Please refer to the Fuel Gauge
datasheet for the duration of the initialization sequence.
During the initialization sequence, the device acquires the
Cell voltage for the RSOC initialization. The initial RSOC
is obtained using the Open Circuit Voltage (OCV) of the
battery, which is the measurement of the battery voltage
when no load is applied. The device has a built−in OCV
look−up table. The measured cell voltage is translated using
the table to obtain the new Initial RSOC. After the
completion of the initialization sequence, the acquired
initial RSOC is set in the RSOC (0x0D) and the ITE (0x0F)
registers.

Obtaining an Initial RSOC using Before RSOC
A battery or charger may supply the power to the VDD

terminal of the device. If the RSOC value after the
completion of the initialization sequence is not as expected,
it is assumed that the battery was charged or discharged
during that period. If the battery is not charged, the
maximum voltage is suitable for more accurate initial
RSOC. Because the maximum voltage is closer to the OCV.
Try all “Before RSOC” commands and read RSOC (0x0D)
to search the maximum voltage. The higher RSOC after the
commands is caused by the higher voltage. Voltage
sampling is performed four times during the initialization
sequence as shown in Figure 8. 1st sampled Cell voltage is
referenced to get the Initial RSOC. Before RSOC commands
can initialize RSOC using the other 2nd to 4th sampled
voltage. Table 8 shows the Before RSOC commands to
initialize RSOC using each sampled voltage.

http://www.onsemi.com/

AND90162/D

www.onsemi.com
7

Figure 8. Sampling Order for Before RSOC Command

Table 8. BEFORE RSOC COMMAND

Command
Code DATA

Sampling Order of Battery
Voltage for RSOC Initialization

0x04 0xAA55 1st sampling

0xAA56 2nd sampling

0xAA57 3rd sampling

0xAA58 4th sampling

Power−on Using Charger
In general, the battery protection controller as shown in

Figure 1 disconnects the battery when an overvoltage or
overcurrent is detected. The power supply to the Fuel Gauge
is also stopped at that time. In general, the battery protection
controller reconnects the battery when it detects a voltage
supply from the charger. In such cases, the charger starts to
supply power to the Fuel Gauge first. Therefore, the voltage
acquired by the device in the initialization sequence is the
charging voltage of the charger. Depending on the charging
voltage, a higher RSOC is obtained. Therefore, accurate
initial RSOC cannot be obtained during charging. After the
charger has stopped, the following two functions can be used
to fix this problem.
• Initial RSOC Command (0x07)

• Automatic Convergence of the Error

Initial RSOC Command initializes the RSOC using the
Cell Voltage obtained after writing the command. At this
time, application is running for I2C communication and so
on, so the battery is not completely unloaded. However, if
the load is 0.025C or less (i.e. less than 75 mA for 3000 mAh
design capacity battery), this command can return an RSOC
reading that is close to the actual value.

Automatic Convergence of the Error is a function that
automatically corrects RSOC errors. This feature corrects
30% errors in around one hour regardless of the load
connected. Figures 9 and 10 are examples of modifications
made using this feature. This function can also fix the case
of lower RSOC problem during the battery discharging
conditions. To enable Automatic Convergence of the Error
function, set this device to Operational mode and set the
Current Direction (0x0A) register to Auto mode.

Figure 9. An Example of RSOC Automatic
Convergence with 0.05C Load Current.

RSOC: 90% to 60%

Figure 10. An Example of RSOC Automatic
Convergence without Load Current.

RSOC: 90% to 58%

Selection and Initialization of Profile
The OCV look−up table for obtaining initial RSOC is

different for each Battery profile. The initial RSOC is
obtained using the Battery profile specified by the initial
value of Change of The Parameter (0x12), which is stored in
the built−in Non Volatile Memory (NVM) of the device. If
an initial value to select an appropriate profile has already
been programmed in the NVM, you can omit the I2C
command described below. Refer to “Built−in NVM
Writing Protocol” section for instructions on how to
program the NVM.

If the appropriate profile is not programmed in the NVM,
you must write it into the Change of the Parameter register
using I2C command. The device also automatically
initializes the RSOC, when it receives the write. For the

http://www.onsemi.com/

AND90162/D

www.onsemi.com
8

initialization, the OCV look−up table of the selected profile
and the first sampled cell voltage is used.

Use the above−mentioned functions (i.e. Before RSOC
command, Initial RSOC command, and Automatic
Convergence of the Error) to correct the initial RSOC after
selecting an appropriate Profile for your applications.

Temperature Measurement
The Status Bit (0x16) controls temperature measurement

with the thermistor. Set the bit 0 to 1 to measure the
temperature with the attached thermistor. The bit selection
details are shown in Table 9. Battery temperature
information is an essential parameter for the RSOC
measurement. If the thermistor in the battery pack is
connected to another device, the Fuel Gauge cannot measure
the battery temperature using the thermistor. In that case, set
TSENSE1 to I2C mode. Please note that the device cannot
update the Cell temperature in I2C mode. The application
processor must write the battery temperature to Cell
temperature (0x08). For high−precision RSOC
measurement, it is recommended to update the cell
temperature every time the temperature changes by more
than 1°C. Temperature update is not required when the
device is in Sleep mode.

Table 9. STATUS BIT

Register Name
Status

BIT

Set Value in Status Bit

0 1

Cell Temperature
(TSENSE)

BIT0 I2C Mode Thermistor
Mode

• Thermistor mode: The device measures thermistors
directly

• I2C mode: The device receives temperature information
via I2C

Alarm Functions
By using the alarm functions, the application processor

can quickly detect a condition exceeding a preset threshold.
Table 10 shows the registers for setting alarm thresholds and
the corresponding registers monitored by the alarm
function. The alarm function is disabled if the threshold
register contains its default value. When an alarm condition
occurs, this device outputs Low to ALARMB to notify the

application processor. The processor can determine the
exact cause of the alarm by reading the Alarm bit in
BatteryStatus (0x19). The ALARMB low output is cleared
if the alarm condition is released. However, once the
BatteryStatus Alarm bit is set, it will not reset itself on
releasing the alarm condition. The reset must be performed
by the processor.

There is a notice about the low output delay to ALARMB
when an alarm condition occurs. When the battery is in
neither charging nor discharging state, the output delays by
up to 60 seconds in order to reduce the current consumption.

The alarm function is only valid in Operational mode. In
Sleep mode, ALARMB output is canceled regardless of the
alarm status.

Log Functions
Table 11 shows the list of log registers and their

corresponding monitored registers. These log functions start
counting from the initial value and detect maximum and
minimum log values after the initialization sequence of the
device. The log functions are only effective in Operational
mode. All the log registers are Read/Write enabled except
CycleCount (0x17).

If these registers are written with the user’s value,
counting and detection operation will start from the defined
value. Figure 11 shows an example of cycle count
measurement. When RSOC reduction reaches 100%,
CycleCount is incremented by +1 count. The battery does
not need to be in a full charge or empty charge state to
continue the cycle count.

Figure 11. CycleCount (0x17) Report Example

Table 10. ALARM FUNCTIONS

Threshold Register Monitored Register BIT of Battery Status (0x19) Unit

Alarm High Cell Voltage (0x1F) Cell Voltage (0x09) 15 mV

Alarm High Temperature (0x21) (Note 3) Cell Temperature (TSENSE) (0x08) 12 0.1 K

Alarm Low Cell Voltage (0x14) Cell Voltage (0x09) 11 mV

Alarm Low RSOC (0x13) RSOC (0x0D) 9 %

Alarm Low Temperature (0x20) (Note 3) Cell Temperature (TSENSE) (0x08) 8 0.1 K

3. These alarms are enabled when TSENSE is set to Thermistor mode.

http://www.onsemi.com/

AND90162/D

www.onsemi.com
9

Table 11. LOG FUNCTIONS

Log Register Monitored Register Unit Initial Value

CycleCount (0x17) RSOC (0x0D) count 0x0000

TotalRuntime (0x25,0x24) N/A minutes 0x0000

Accumulated Temperature (0x27,0x26) Cell Temperature (TSENSE) (0x08) 2 K × minutes 0x0000

Accumulated RSOC (0x29,0x28) RSOC (0x0D) % × minutes 0x0000

Maximum Cell Voltage (0x2A) Cell Voltage (0x09) mV 0x0000

Minimum Cell Voltage (0x2B) Cell Voltage (0x09) mV 0x1388

Maximum Cell temperature (TSENSE) (0x2C)
(Note 4)

Cell Temperature (TSENSE) (0x08) 0.1 K 0x0980

Minimum Cell temperature (TSENSE) (0x2D)
(Note 4)

Cell Temperature (TSENSE) (0x08) 0.1 K 0x0DCC

4. These logs are updated when TSENSE is Thermistor mode.

Detection of Battery Status
This device detects whether the battery is charged or

discharged and outputs that status to the Discharging Bit
(Bit 6 of BatteryStatus). Table 12 shows the relationship
between the Discharging bit and the Battery status.
Figure 12 shows an example of Discharging Bit
measurement when the battery is charging, discharging, and
at no load condition. If Current Direction(0x0A) is set
0x0000(Auto mode), Battery Status shows result of Auto
mode.

Table 12. DISCHARGING BIT
 (BIT 6 OF BATTERY STATUS REGISTER)

Discharging Bit Battery Status

0 Charge

1 Discharge or No load current

Figure 12. Discharging Bit and RSOC during Charge
and Discharge Cycle

Detection of System Reset
This device will be reset and stop battery measurement

under the following conditions:
• The battery is removed

• The battery voltage falls below the reset release voltage
of this device due to excessive load current

• The battery protection controller disconnects the battery

• The RESETB pin detects the low level

If appropriate initial values of the registers are written into
the built−in NVM, the device can start measuring the battery
immediately after these conditions are removed.

Alternatively, the application processor can also start the
battery measurement by executing the starting flow to set the
initial values of the registers. In this case, the processor can
use the INITIALIZED bit of BatteryStatus (0x19) to trigger
the starting flow, as shown in Figure 13. The INITIALIZED
bit is automatically set to 1 after a power−on reset. If the
processor had set this bit to 0 immediately after the last
power−on reset, the processor can detect the device reset
operation by reading this bit.

Figure 13. Flow to Restart the Gauge after Excessive
Voltage Drop

No

Yes

Starting flow

Write BatteryStatus to 0x0040
(INITIALIZED=0)

Initial sequence
(INITIALIZED=1)

INITIALIZED=1

http://www.onsemi.com/

AND90162/D

www.onsemi.com
10

How to Estimate Time to Empty
This section describes how the Fuel Gauge estimates the

remaining battery time. The Time to Empty register (0x03)
provides the estimated remaining time until RSOC reaches
0%. This device automatically learns an average time that is
required for continuous 10% RSOC decrease during each
discharge operation. Time to Empty is calculated by using
the learned decreased rate before RSOC reaches 0%. See
Figure 14 for details. If RSOC increases after a charge
operation, the previously−learned decrease rate before
charging is used to predict Time to Empty. Time to Empty
set 0xFFFF to get continuous 10% RSOC decrease.

Figure 14. How to Estimate Time to Empty
Time to Empty changes dynamically if load current

changes. If stable Time to Empty is needed, Host processor
can calculate below formula.

Time to Empty = 60 / “Average active discharge current
(C rate)” / 100 x RSOC (minutes)
“Average active discharge current” is the average current

which is used to estimate time until empty. Its unit should be
C rate. Example:
Average active discharge current (C rate)=0.2C
RSOC=80%
Time to Empty(minute) = 60/0.2/100 x 80=240

How to Estimate Time to Full
This section describes how the Fuel Gauge estimates the

full time. The Time to Full register (0x05) provides the
estimated remaining time until RSOC becomes 100%.
During constant current charging, this device continues
learning the RSOC increase rate. The time until Cell voltage
reaches the maximum charging voltage (predefined) is
calculated using the learned rate. During constant voltage
charging the charging current decreases to the termination
current. Therefore, this LSI estimates that the charging time
for each 1% RSOC gradually gets longer. See Figure 16. The
Time to Full (TTF) register outputs the total time for both
modes. Refer to Figure 15.

Figure 15. How to Estimate Time to Full

Figure 16. Time to Full (0x05) Report Example under CC−CV Charging

http://www.onsemi.com/

AND90162/D

www.onsemi.com
11

I2C Communication Protocol
This section describes I2C protocol and the actual

waveform. Refer to the datasheet about the characteristics.

S Slave Address Wr A Command Code A

Sr Slave Address Rd A Data Byte Low A Data Byte High

A CRC−8 N P

S : Start Condition

Sr : Repeated Start Condition

Rd : Read (bit value of 1)

Wr : Write (bit value of 0)

A : ACK (bit value of 0)

N : NACK (bit value of 1)

P : Stop Condition

CRC−8 : Slave Address to Last Data (CRC−8−ATM : ex. 3778 mV : 0x16, 0x09, 0x17, 0xC2, 0x0E → 0x86)

: Master−to−Slave

: Slave−to−Master

Figure 17. Read Word Protocol

Read Waveform
Example: Read RSOC. RSOC = 98%.
I2C_ReadWord(0x0D);
Slave Address + Write: 0x16 (1)
Command Code: 0x0D
Slave Address + Read: 0x17 (2)
Data Byte Low: 0x62 (RSOC = 98%)
Data Byte High: 0x00
CRC−8: 0xEC (3)

Figure 18. Overview of Read Waveform

http://www.onsemi.com/

AND90162/D

www.onsemi.com
12

1. Slave Address + Write: 0x16
Command Code: 0x0D

Figure 19. Read Waveform (1)

Figure 19. Read waveform (1)

Slave Address + Write Command Code

Start ACK ACK

Red: Master to Slave
Blue: Slave to Master

2. Slave Address + Read: 0x17
Data Byte Low: 0x62 (RSOC = 98%)
Data Byte High: 0x00

Figure 20. Read Waveform (2)

Slave Address + Read DATA Byte Low
Repeated
Start

ACK ACK

Red: Master to Slave
Blue: Slave to Master

DATA Byte High

ACK

NOTE: The read data becomes 0xFFFF if Repeated Start Condition is not done.

http://www.onsemi.com/

AND90162/D

www.onsemi.com
13

3. CRC−8: 0xEC

Figure 21. Read Waveform (3)

Red: Master to Slave
Blue: Slave to Master

CRC−8 NACK

Stop

Figure 22. Write Word Protocol

S Slave Address Wr A Command Code A

Data Byte Low A Data Byte High A CRC−8 A P

S : Start Condition

Sr : Repeated Start Condition

Rd : Read (bit value of 1)

Wr : Write (bit value of 0)

A : ACK (bit value of 0)

N : NACK (bit value of 1)

P : Stop Condition

CRC−8 : Slave Address to Last Data (CRC−8−ATM : ex. 3778 mV : 0x16, 0x09, 0x17, 0xC2, 0x0E → 0x86)

: Master−to−Slave

: Slave−to−Master

http://www.onsemi.com/

AND90162/D

www.onsemi.com
14

Write Waveform
Example: Set IC Power Mode to Operational mode.
I2C_WriteWord (0x15 , 0x0001);
Slave Address + Write: 0x16 (1)
Command Code: 0x15
Data Byte Low: 0x01 (2)
Data Byte High: 0x00
CRC−8: 0x64 (3)

Figure 23. Overview of Write Waveform

1. Slave Address + Write: 0x16
Command Code: 0x15

Figure 24. Write Waveform (1)

Command Code: 0x15

Slave Address + Write Command Code

Start ACK ACK

Red: Master to Slave
Blue: Slave to Master

http://www.onsemi.com/

AND90162/D

www.onsemi.com
15

2. DATA Byte Low: 0x01
DATA Byte High: 0x00

Figure 25. Write Waveform (2)

DATA Byte Low DATA Byte High

ACK ACK

Red: Master to Slave
Blue: Slave to Master

3. CRC−8: 0x64

Figure 26. Write Waveform (3)

CRC−8
StopACK

Red: Master to Slave
Blue: Slave to Master

http://www.onsemi.com/

AND90162/D

www.onsemi.com
16

STARTING FLOW AND SAMPLE CODE

This section shows starting flow and the sample codes to
startup the gauge. The sample codes set only the Mandatory
registers.

Sample code
• CRC−8 calculation

• LC709209F Starting flow with Thermistor mode

• LC709209F Starting flow with I2C mode

CRC−8 calculation
This code calculates CRC−8 to use in I2C communication.
/**
 *===
 * Calculate of CRC-8 by C-Language
 *===
 */

#define dPOLYNOMIAL8 0x8380

/*
 *===
 * Input data : previous data of CRC-8 , calculate data
 * Output data : CRC-8 data after calculate
 * Function : CRC-8 calculate
 *===
 */
static unsigned char u1_CRC_8_u1u1(unsigned char u1ArgBeforeData , unsigned char u1ArgAfterData)
{
 unsigned char u1TmpLooper = 0;
 unsigned char u1TmpOutData = 0;
 unsigned short u2TmpValue = 0;

 u2TmpValue = (unsigned short)(u1ArgBeforeData ^ u1ArgAfterData);
 u2TmpValue <<= 8;

 for(u1TmpLooper = 0 ; u1TmpLooper < 8 ; u1TmpLooper++){
 if(u2TmpValue & 0x8000){
 u2TmpValue ^= dPOLYNOMIAL8;
 }
 u2TmpValue <<= 1;
 }

 u1TmpOutData = (unsigned char)(u2TmpValue >> 8);

 return(u1TmpOutData);
}

int main(void)
{
 static unsigned char u1Calc = 0;
 static unsigned char u1CRC8 = 0;

 // Write Word Protocol
 u1Calc = u1_CRC_8_u1u1(0x00 , 0x16); // Address
 u1Calc = u1_CRC_8_u1u1(u1Calc , 0x07); // Command
 u1Calc = u1_CRC_8_u1u1(u1Calc , 0x55); // Data
 u1CRC8 = u1_CRC_8_u1u1(u1Calc , 0xAA); // Data

 // Read Word Protocol
 u1Calc = u1_CRC_8_u1u1(0x00 , 0x16); // Address
 u1Calc = u1_CRC_8_u1u1(u1Calc , 0x0D); // Command
 u1Calc = u1_CRC_8_u1u1(u1Calc , 0x17); // Address
 u1Calc = u1_CRC_8_u1u1(u1Calc , 0x20); // Data
 u1CRC8 = u1_CRC_8_u1u1(u1Calc , 0x00); // Data

 return(0); //
}

http://www.onsemi.com/

AND90162/D

www.onsemi.com
17

Starting Flow
This device starts the initial sequence automatically after

release of the power−on reset. I2C communication is
enabled after the sequence. Then set registers to start
gauging according to the following sample codes.

Write and Read Register (Common)
void i2c_WriteWord(unsigned char u1ArgCommand , unsigned short u2ArgData)
{
 // H/W of I2C for Application Processor
}

unsigned short i2c_ReadWord(unsigned char u1ArgCommand)
{
 // H/W of I2C for Application Processor
}

LC709209F Starting Flow with Thermistor Mode

Figure 27. LC709209F Starting Flow with Thermistor Mode

No

Yes

Write IC Power mode

Write APA

Write Change Of The Parameter

Write Status Bit

Write TSENSE Thermistor B

Initialsequence

Read RSOC

After XX sec

Read RSOC

http://www.onsemi.com/

AND90162/D

www.onsemi.com
18

/**
 *===
 * Sample of Application Processor(LC709209F / temperature read via Thermistor)
 *===
 */

void i2c_WriteWord(unsigned char u1ArgCommand , unsigned short u2ArgData)
{
 // Implementation of I2C for Application Processor
}

unsigned short i2c_ReadWord(unsigned char u1ArgCommand)
{
 // Implementation of I2C for Application Processor
}

int main(void)
{
 unsigned short u2RSOC;

 /*
 Battery connection
 LC709209F Power ON
 AP(Application Processor) Power On
 */

 // Initialization process from Application Processor
 i2c_WriteWord(0x0B , 0x3534); // Slave Function : APA(Adjustment Pack Application)
 // Command : 0x0B
 // Data : 0x3534 (ex. APA = 0x3534)

 i2c_WriteWord(0x12 , 0x0000); // Slave Function : Change Of The Parameter
 // Command : 0x12
 // Data : 0x0000 (ex. Battery profile = 0x0000)

 i2c_WriteWord(0x06 , 0x0D34); // Slave Function : TSENSE Thermistor B
 // Command : 0x06
 // Data : 0x0D34 (ex. B = 3380)

 i2c_WriteWord(0x16 , 0x0001); // Slave Function : Status Bit
 // Command : 0x16
 // Data : 0x0001 (Thermistor Mode)

 i2c_WriteWord(0x15 , 0x0001); // Slave Function : IC Power Mode
 // Command : 0x15
 // Data : 0x0001 (Operational Mode)

 u2RSOC = i2c_ReadWord(0x0D); // Slave Function : RSOC
 // Command : 0x0D

 // Control from Application Processor
 while(1){

 wait_XXs(); // wait XX s
 // EX 10s

 if(SmartPhone_PowerOn){
 // SmartPhone Power ON
 u2RSOC = i2c_ReadWord(0x0D); // Slave Function : RSOC
 // Command : 0x0D
 }else{
 // SmartPhone Power OFF
 while(SmartPhone_PowerOff){
 // AP Low Power Mode
 }
 }
 }

}

http://www.onsemi.com/

AND90162/D

www.onsemi.com
19

LC709209F Starting Flow with I2C Mode

Figure 28. LC709209F Starting Flow with I2C Mode

No

Yes

Write IC Power mode

Write APA

Write Change Of The Parameter

Initial sequence

Read RSOC

After XX sec

Read RSOC

Write Cell Temperature

http://www.onsemi.com/

AND90162/D

www.onsemi.com
20

/**
 *===
 * Sample of Application Processor(LC709209F / temperature input to LSI Via I2C)
 *===
 */

void i2c_WriteWord(unsigned char u1ArgCommand , unsigned short u2ArgData)
{
 // Implementation of I2C for Application Processor
}
unsigned short i2c_ReadWord(unsigned char u1ArgCommand)
{
 // Implementation of I2C for Application Processor
}

int main(void)
{
 unsigned short u2RSOC;

 /*
 Battery connection
 LC709209F Power ON
 AP(Application Processor) Power On
 */

 // Initialization process from Application Processor
 i2c_WriteWord(0x0B , 0x3534); // Slave Function : APA(Adjustment Pack Application)
 // Command : 0x0B
 // Data : 0x3534 (ex. APA = 0x3534)

 i2c_WriteWord(0x12 , 0x0000); // Slave Function : Change Of The Parameter
 // Command : 0x12
 // Data : 0x0000 (ex. Battery profile = 0x0000)

 i2c_WriteWord(0x15 , 0x0001); // Slave Function : IC Power Mode
 // Command : 0x15
 // Data : 0x0001 (Operational Mode)

 u2RSOC = i2c_ReadWord(0x0D); // Slave Function : RSOC
 // Command : 0x0D

 // Control from Application Processor
 while(1){

 wait_XXs(); // wait XX s
 // EX 10s

 if(SmartPhone_PowerOn){
 // SmartPhone Power ON
 u2RSOC = i2c_ReadWord(0x0D); // Slave Function : RSOC
 // Command : 0x0D

 i2c_WriteWord(0x08 , 0x0BA6); // Slave Function : Cell Temperature
 // Command : 0x08
 // Data : 0x0BA6 (ex. 25C to 25*10 + 2732 to 0x0BA6)
 }else{
 // SmartPhone Power OFF
 while(SmartPhone_PowerOff){
 // AP Low Power Mode
 }
 }
 }

}

http://www.onsemi.com/

AND90162/D

www.onsemi.com
21

Built−in NVM Writing Protocol
The following sections describe how to write user ID and

initial setting data into the registers of the devices’s built−in
NVM. I2C commands of the device can control all of the
writes. Therefore, a master device connected to the device
by I2C as shown in Figure 29 can control the write.

Two sample codes at the end of this note will help you
reduce the time to implement your program and ensure your
understanding.

Figure 29. Block Diagram about User ID Writing

Built−in NVM

Master device LC709209F

User ID
Initial setting data

I2CUser ID
Initial setting data FlashWrite()

Register

User ID
User ID (0x36, 0x37) provides 32−bit programmable

registers stored in the built−in NVM. You can use that value
for any purpose, for example individual identification of
battery pack.

Initial Setting Data of Registers
The initial values of registers shown in Table 13 can be

written into the built−in NVM. These provide basic
information for battery gauging. If these has been
programmed once, they are loaded automatically during
every initial sequence after reset or power on. In that case,
the device can start gauging without control of a master
device.

Table 13. REGISTERS WHOSE INITIAL VALUE IS
STORED IN THE BUILT−IN NVM

Command Code Register Name ISD No.

0x0B APA #1

0x0C APT #2

0x06 TSENSE Thermistor B #3

0x16 Status Bit #4

0x1C Termination Current Rate #5

0x1D Empty Cell Voltage #6

0x1E ITE Offset #7

0x13 Alarm Low RSOC #8

0x14 Alarm Low Cell Voltage #9

0x1F Alarm High Cell Voltage #10

0x20 Alarm Low Temperature #11

0x21 Alarm High Temperature #12

0x15 IC Power Mode #13

0x12 Change of the Parameter #14

Conditions for ID Writing
The following operating conditions must be satisfied

during programming of the buit−in NVM.
Allowable operating conditions during NWM writing
♦ Supply voltage: 3.0 V to 5.0 V
♦ Ambient temperature: 10°C to 55°C

The re−writing cycle is confined to 100 cycles, and should
be controlled by a master device in order to prevent multiple
programming. Figure 30 shows how a master device
confirms User ID or initial value of a target register before
the writing. If the read data is not same as the target data, start
writing.

Figure 30. Flow to Prevent Multiple ID Writing

1st. Power−On

Read the initial value of written
register (e.g.: 0x06)

Is Read data
same as the target

data?

YES

NO

Write initial values

End

http://www.onsemi.com/

AND90162/D

www.onsemi.com
22

Outline of User ID Writing Flow
Figure 31 shows the flows for writing user ID and initial

setting data into the built−in NVM. These flows consist of
mode setting, programming, verification and mode release.
In each step of this flow a master device transmits
commands shown in Table 14. This table indicates that the
write commands require some kind of data size. The write

n−byte data protocol is shown in Figure 32. See Figure 17 for
the read data protocol.

The commands in the data transfer and start verify
processes are different for user ID and initial setting data.
The details of each process are explained in the following
sections.

Figure 31. Outline of Writing Flow

Start

End

Change IC Power Mode

Enter Write Mode

Data Transfer #1 for User ID

Reset Write Mode

Start Verify for User ID

Data Transfer #2 for User ID

Read Result

Start

End

Change IC Power Mode

Enter Write Mode

Data Transfer #1 for Initial
Setting Data

Reset Write Mode

Start Verify for Initial Setting
Data

Data Transfer #2 for Initial
Setting Data

Read Result

User ID Initial Setting Data

http://www.onsemi.com/

AND90162/D

www.onsemi.com
23

Table 14. COMMAND LIST FOR USER ID WRITING PROTOCOL
2 bytes of all contents are little endian.

Ex1: 0x55AA → data [0] = 0xAA, data [1] = 0x55
Ex2: instruction [2] = 0x8180 → instruction [0] = 0x80, instruction [1] = 0x81

Command Code Function R/W Data Size Contents

0x00 Enable Write Mode W 2 0x55AA

0x01 Enter Write Mode W 2 0x55AA

0x02 Set Data W 130 User ID:
Data[0] to Data[1] 0x8180
Data[2] to Data[5] User ID data
Data[6] to Data[129] 0x00

Initial setting data:
Data[0] to Data[1] 0xA000
Data[2] to Data[29] Initial setting data
Data[30] to Data[129] 0xAA56

0x03 Set Key1 W 2 0x55AA

0x04 Set Key2 W 2 0x00A0

0x05 Write Exe W 2 0x55AA

0x06 Start Verify W 4 User ID: 0x81808180
Initial setting data: 0xA000A000

0x07 Verify Result R 2 Result of verification
Success: 0x0001
Failure: 0x000

0x08 Reset Write Mode W 2 0x55AA

NOTE: Commands 0x03 to 0x08 are enabled in Write mode.

Figure 32. Write N−bytes Data Protocol

S Slave Address Wr A Command Code A

Data [0] A ・・・ Data [N−1] A CRC−8 A P

S : Start Condition

Wr : Write (bit value of 0)

A : ACK (bit value of 0)

P : Stop Condition

CRC−8 : Slave Address to Last Data (CRC−8−ATM : ex. 3778 mV : 0x16, 0x09, 0x17, 0xC2, 0x0E → 0x86)

: Master−to−Slave

: Slave−to−Master

http://www.onsemi.com/

AND90162/D

www.onsemi.com
24

Change Power Mode
This process sets the device into a special mode to

program the built−in NVM.

Table 15. IC POWER MODE COMMAND

Command Name Slave Address (W) Command Code Data[0] Data[1] CRC−8

IC Power Mode 0x16 0x15 0x00 0x00 0x71

Figure 33. Change Power Mode

Start

End

Write IC Power Mode

Enter Write Mode
This process sets the device into a special mode to

program the built−in NVM. After these commands have
been input, wait for 300 ms to transition into the mode.

Table 16. WRITE MODE COMMAND

Command Name Slave Address (W) Command Code Data[0] Data[1] CRC−8

Enable Write Mode 0x16 0x00 0xAA 0x55 0x25

Enter Write Mode 0x16 0x01 0xAA 0x55 0x4E

Figure 34. Enter Write Mode

Start

End

Write Enable Write Mode

Write Enter Write Mode

Wait for 300 ms

Data Transfer #1 for User ID
This process programs User ID data in the built−in NVM.

The Set Data command sends the data into the device. Then
the Set Key1, Set Key2 and Write Exe commands execute
programming into the built−in NVM. It takes up to 40 ms for

programming to be completed. During this period the device
is busy and cannot respond to any I2C commands. It
acknowledges the period to a master device using clock
stretching.

http://www.onsemi.com/

AND90162/D

www.onsemi.com
25

Table 17. DATA TRANSFER COMMAND FOR USER ID (130 BYTES DATA)

Command
Name

Slave
Address(W)

Command
Code Data[0] Data[1] Data[2] Data[3] Data[4] Data[5]

Data
[6~129] CRC−8

Set data 0x16 0x02 0x80 0x81 UID[0] UID[1] UID[2] UID[3] 0x00 0xXX

NOTE: Set User ID data modified according to following formula in Data[5:2]. The Data is calculated as Two’s complement, if it is a
negative number. CRC−8 is calculated with the string composed of the data from slave address to Data[129].
UID[1:0] = Lower 16 bits of User ID − 0x55AA UID[3:2] = Upper 16 bits of User ID − 0x55AA
e.g.: In the case of 32 bits of User ID 0x12345678

UID[1:0] = 0x5678 − 0x55AA = 0x00CE … UID[0] = 0xCE, UID[1] = 0x00
UID[3:2] = 0x1234 − 0x55AA = 0xBC8A … UID[2] = 0x8A, UID[3] = 0xBC

Table 18. DATA TRANSFER COMMAND (2 BYTES DATA)

Command Name Slave Address (W) Command Code Data[0] Data[1] CRC−8

Set Key1 0x16 0x03 0xAA 0x55 0x98

Set Key2 0x16 0x04 0xA0 0x00 0xA0

Write Exe 0x16 0x05 0xAA 0x55 0xE5

Data Transfer #1 for Initial Setting Data
This process programs initial setting data into the built−in

NVM. As shown in Table 19, the data transferred by the Set
Data command is different from user ID. The initial values
of the registers numbered with the ISD# in Table 13 are
transferred to the device using Data[2] to Data[29] of the Set
Data command.

Data[30] to Data[129] of the command are filled with
repeated and fixed data: 0x56 and 0xAA. Set Key1, Set Key
2 and Write Exe commands and programming time are the
same as user ID.

Table 19. DATA TRANSFER COMMAND FOR INITIAL SETTING DATA (130 BYTES DATA)

Command
Name

Slave
Address(W)

Command
Code Data[0] Data[1] Data[2] Data[3] Data[4] Data[5]

Data[6] to
Data[27]

Set data 0x16 0x02 0x00 0xA0 ISD#1[0] ISD#1[1] ISD#2[0] ISD#2[1]
ISD#3 to
ISD#13

Data[28] Data[29] Data[30] Data[31] Data[32] to Data[129] CRC−8

ISD#14[0] ISD#14[1] 0x56 0xAA 0x56, 0xAA 0xXX

NOTE: Set the initial values modified according to following formula in Data [29:2]. The data is calculated as two’s complement, if it is a
negative number. CRC−8 is calculated with the string composed of the data from slave address to Data[129].
ISD#X [1:0] = “16−bit Initial value” − 0x55AA
E.g.: when the initial value of APA (0x0B) register is 0x5678,

 ISD#1 [1:0] = 0x5678 − 0x55AA = 0x00CE ... ISD#1[0] = 0xCE, ISD#1[1] = 0x00

Figure 35. Data Transfer #1 and #2

Start

End

Write Set Key1

Write Set Key2

Write Set Data

Write Write Exe

http://www.onsemi.com/

AND90162/D

www.onsemi.com
26

Start Verify for User ID
This process sets the device into a special mode to verify

the user ID data written in the built−in NVM data.

Table 20. START VERIFY COMMAND FOR USER ID

Command Name Slave Address (W) Command Code Data[0] Data[1] Data[2] Data[3] CRC−8

Start Verify 0x16 0x06 0x80 0x81 0x80 0x81 0x4A

Start Verify for Initial Setting Data
This process sets the device into a special mode to verify

the initial setting data written in the built−in NVM data.

Table 21. START VERIFY COMMAND FOR INITIAL SETTING DATA

Command Name Slave Address (W) Command Code Data[0] Data[1] Data[2] Data[3] CRC−8

Start Verify 0x16 0x06 0x00 0xA0 0x00 0xA0 0x02

Figure 36. Start Verify

Start

End

Write Start Verify

Data Transfer #2
This process verifies the programmed built−in NVM data

with retransmit data. The commands are the same as Data
transfer #1. But programming into built−in NVM is not
executed because the device is in a special mode to verify.
Therefore a master device does not have to wait for 40 ms.

Read Result
This process reads the result of Data transfer #2

verification. If the verification was successful, the read data
is 0x0001. On the other hand, if the verification failed, the
read data is 0x0000, and a master device can retry the write
operation by following the steps in the Retry by Error
section.

Table 22. READ VERIFY RESULT COMMAND

Command Name Slave Address (W) Command Code IC Address (R) Data[0] Data[1] CRC−8

Verify Result 0x16 0x07 0x17 Lower 8−bit of
result

Upper 8−bit of
result

0xXX

NOTE: CRC−8 is calculated with the string composed of the data from the first slave address to Data [1].

Figure 37. Read Result

Start

End

Read Verify Result

http://www.onsemi.com/

AND90162/D

www.onsemi.com
27

Reset Write Mode
This process releases the device from all special modes

and initializes all registers. Wait for 1.5 s to allow the
initialization process to complete before you continue to

access the device. Or you can turn off the power to the device
without waiting.

Table 23. RESET WRITE MODE COMMAND

Command Name Slave Address (W) Command Code Data[0] Data[1] CRC−8

Reset Write Mode 0x16 0x08 0xAA 0x55 0x74

Figure 38. Reset Write Mode

Start

End

Write Reset Write Mode

Wait for 1.5 s

Retry by Error
When an I2C communication error or verification error

occurs, the first step of the re−write process is limited as
shown in Figure 39. If the error is detected during the
Change IC Power Mode process, a master can restart the

process to change IC Power Mode. But if the error was
detected at any stage between Enter Write Mode and Reset
Write Mode, a master must restart the sequence from the
Enter Write Mode step.

Figure 39. Retry by Error

Start

End

Change IC Power Mode

Enter Write Mode

Data Transfer #1

Reset Write Mode

Start Verify

Data Transfer #2

Read Result

http://www.onsemi.com/

AND90162/D

www.onsemi.com
28

This sample code writes user ID data into the built−in NVM. It includes the flow to prevent multiple ID writing.
/**
 *===
 * Sample of Application Processor(User ID writing)
 *===
 */

#define USERID_L (0x5678) // Definition of lower 16bits of User ID
#define USERID_H (0x1234) // Definition of upper 16bits of User ID

void i2c_WriteWord(unsigned char u1ArgCommand , unsigned short u2ArgData)
{
 // Implementation of I2C for Application Processor
}

unsigned short i2c_ReadWord(unsigned char u1ArgCommand)
{
 // Implementation of I2C for Application Processor
}

void i2c_WriteData(unsigned char u1ArgCommand , unsigned char *u1ArgData, unsigned short u2ArgSz)
{
 // Implementation of I2C for Application Processor
}

void i2c_DataTransfer(void)
{
 unsigned char u1Data[130];
 unsigned short u2UID_L;
 unsigned short u2UID_H;
 unsigned short n;

 u2UID_L = USERID_L - 0x55AA;
 u2UID_H = USERID_H - 0x55AA;

 u1Data[0] = 0x80;
 u1Data[1] = 0x81;
 u1Data[2] = (u2UID_L & 0x00FF);
 u1Data[3] = (u2UID_L & 0xFF00) >> 8;
 u1Data[4] = (u2UID_H & 0x00FF);
 u1Data[5] = (u2UID_H & 0xFF00) >> 8;
 for (n=6; n<130; n++){
 u1Data[n] = 0;
 }
 i2c_WriteData(0x02 , u1Data , 130); // Slave Function : Set data
 // Command : 0x02
 // Data[0] : 0x80 , Data[1] : 0x81 ,
 // Data[2] : UID0 , Data[3] : UID1 ,
 // Data[4] : UID2 , Data[5] : UID3 ,
 // Data[6] ... Data[129] : 0x00

 i2c_WriteWord(0x03 , 0x55AA); // Slave Function : Set key1
 // Command : 0x03
 // Data : 0x55AA

 i2c_WriteWord(0x04 , 0x00A0); // Slave Function : Set key2
 // Command : 0x04
 // Data : 0x00A0

 i2c_WriteWord(0x05 , 0x55AA); // Slave Function : Write/Verify exe
 // Command : 0x05
 // Data : 0x55AA
}

int main(void)
{
 unsigned short u2Result;
 unsigned char u1Data[4];
 unsigned short u2UserID_L;
 unsigned short u2UserID_H;

 /*
 Battery connection
 LC709209F Power ON
 AP(Application Processor) Power On
 */
 u2UserID_L = i2c_ReadWord(0x36); // Slave Function : User ID Lower 16bits
 // Command : 0x36

 u2UserID_H = i2c_ReadWord(0x37); // Slave Function : User ID Upper 16bits
 // Command : 0x37

http://www.onsemi.com/

AND90162/D

www.onsemi.com
29

This sample code writes user ID data into the built−in NVM. It includes the flow to prevent multiple ID writing. (continued)

 if((u2UserID_L != USERID_L) || (u2UserID_H != USERID_H)) {

 // User ID writing is done only once after the first power on.

 // User ID Writing process from Application Processor
 i2c_WriteWord(0x15 , 0x0000); // Slave Function : Change power mode
 // Command : 0x15
 // Data : 0x0000 (Test Mode)

 while(1){

 i2c_WriteWord(0x00 , 0x55AA); // Slave Function : Enable write mode
 // Command : 0x00
 // Data : 0x55AA

 i2c_WriteWord(0x01 , 0x55AA); // Slave Function : Enter write mode
 // Command : 0x01
 // Data : 0x55AA

 wait_300ms(); // wait 300 msec

 i2c_DataTransfer(); // Data Transfer#1 for User ID

 u1Data[0] = 0x80;
 u1Data[1] = 0x81;
 u1Data[2] = 0x80;
 u1Data[3] = 0x81;
 i2c_WriteData(0x06 , u1Data , 4); // Slave Function : Start verify
 // Command : 0x06
 // Data[0] : 0x80 , Data[1] : 0x81 ,
 // Data[2] : 0x80 , Data[3] : 0x81

 i2c_DataTransfer(); // Data Transfer#2 for User ID

 u2Result = i2c_ReadWord(0x07); // Slave Function : Read result
 // Command : 0x07

 if(u2Result == 0x0001){
 // User ID writing success
 i2c_WriteWord(0x08 , 0x55AA); // Slave Function : Reset write mode
 // Command : 0x08
 // Data : 0x55AA
 break;
 }else{
 // User ID writing failure
 }
 }
 }
}

http://www.onsemi.com/

AND90162/D

www.onsemi.com
30

This sample code writes initial setting data into the built−in NVM. It includes the flow to prevent multiple ID writing.

/**
 *===
 * Sample of Application Processor(Initial Setting Data writing)
 *===
 */

#define INIT_CONST_B (0x0FA0) // Definition of Initial value of TSENSE Thermistor B(4000)

void i2c_WriteWord(unsigned char u1ArgCommand , unsigned short u2ArgData)
{

// Implementation of I2C for Application Processor
}

unsigned short i2c_ReadWord(unsigned char u1ArgCommand)
{

// Implementation of I2C for Application Processor
}

void i2c_WriteData(unsigned char u1ArgCommand , unsigned char *u1ArgData, unsigned short u2ArgSz)
{

// Implementation of I2C for Application Processor
}

void i2c_DataTransfer(void)
{

const unsigned char InitialSettingData[128] =
{

// Set the lower 16 bits of the result of subtracting 0x55aa from the value.
0x56, 0xaa, // APA (Hex) = 0x0000
0x74, 0xaa, // APT = 30
0xf6, 0xb9, // TSENSE Thermistor B = 4000
0x57, 0xaa, // Status bit (Hex) = 0x0001
0x58, 0xaa, // Termination current rate = 2
0x56, 0xaa, // Empty cell voltage 0
0x56, 0xaa, // ITE offset = 0
0x56, 0xaa, // Alarm Low RSOC = 0
0x56, 0xaa, // Alarm Low Cell Voltage = 0
0x56, 0xaa, // Alarm High Cell Voltage = 0
0x56, 0xaa, // Alarm Low Temperature = 0
0x56, 0xaa, // Alarm High Temperature = 0
0x57, 0xaa, // IC power mode (Hex) = 0x0001
0x56, 0xaa, // Change Of The Parameter = 0
// The following data are fixed values.
0x56, 0xaa, 0x56, 0xaa,
0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa,
0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa,
0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa,
0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa,
0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa,
0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa,
0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa,
0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa,
0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa,
0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa,
0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa,
0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa, 0x56, 0xaa,

};

unsigned char u1Data[130];
unsigned short n;

u1Data[0] = 0x00;
u1Data[1] = 0xA0;
for (n=0; n<128; n++){

u1Data[n+2] = InitialSettingData[n];
}
i2c_WriteData(0x02 , u1Data , 130); // Slave Function : Set data

// Command : 0x02
// Data[0] : 0x00 , Data[1] : 0xA0 ,
// Data[2] ... Data[129] : Initial Setting Data

http://www.onsemi.com/

AND90162/D

www.onsemi.com
31

i2c_WriteWord(0x03 , 0x55AA); // Slave Function : Set key1
// Command : 0x03

// Data : 0x55AA

i2c_WriteWord(0x04 , 0x00A0); // Slave Function : Set key2
// Command : 0x04
// Data : 0x00A0

i2c_WriteWord(0x05 , 0x55AA); // Slave Function : Write/Verify exe
// Command : 0x05
// Data : 0x55AA

}

int main(void)
{

unsigned short u2Result;
unsigned char u1Data[4];
unsigned short u2ConstB;
/*

Battery connection
LC709209F Power ON
AP(Application Processor) Power On

*/
// Read Initial Value change register ex. TSENSE Thermister B
u2ConstB = i2c_ReadWord(0x06); // Slave Function : TSENSE Themister B

// Command : 0x06

if(u2ConstB != INIT_CONST_B) {

// Initial Setting Data writing is done only once after the first power on.

// Initial Setting Data Writing process from Application Processor
i2c_WriteWord(0x15 , 0x0000); // Slave Function : Change power mode

// Command : 0x15
// Data : 0x0000 (Test Mode)

while(1){
i2c_WriteWord(0x00 , 0x55AA); // Slave Function : Enable write mode

// Command : 0x00
// Data : 0x55AA

i2c_WriteWord(0x01 , 0x55AA); // Slave Function : Enter write mode
// Command : 0x01
// Data : 0x55AA

wait_300ms(); // wait 300 msec

i2c_DataTransfer(); // Data Transfer#1 for Initial Setting Data

u1Data[0] = 0x00;
u1Data[1] = 0xA0;
u1Data[2] = 0x00;
u1Data[3] = 0xA0;
i2c_WriteData(0x06 , u1Data , 4); // Slave Function : Start verify

// Command : 0x06
// Data[0] : 0x00 , Data[1] : 0xA0 ,
// Data[2] : 0x00 , Data[3] : 0xA0

i2c_DataTransfer(); // Data Transfer#2 for Initial Setting Data

u2Result = i2c_ReadWord(0x07); // Slave Function : Read result
// Command : 0x07

if(u2Result == 0x0001){
// Initial Setting Data writing success
i2c_WriteWord(0x08 , 0x55AA); // Slave Function : Reset write mode

// Command : 0x08
// Data : 0x55AA

break;
}else{

// Initial Setting Data writing failure
}

}
}

}

http://www.onsemi.com/

AND90162/D

www.onsemi.com
32

onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910

onsemi is licensed by the Philips Corporation to carry the I2C bus protocol.
Strata is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative

◊

http://www.onsemi.com/
https://www.onsemi.com/site/pdf/Patent-Marking.pdf

