

Silicon Carbide (SiC) Cascode JFET - EliteSiC, Power N-Channel, TO247-4LH, 1200 V, 9.1 mohm

UF4SC120009K4SH

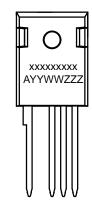
Description

The UF4SC120009K4SH is a 1200 V, 9.1 m Ω G4 SiC FET. It is based on a unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows use of off-the-shelf gate drivers hence requiring minimal redesign when replacing Si IGBTs, Si superjunction devices or SiC MOSFETs. Available in the TO247-4LH HV package, this device exhibits ultra-low gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads and any application requiring standard gate drive.

Features

- On-resistance $R_{DS(on)}$, of 9.1 m Ω (typ)
- Operating Temperature of 175 °C
- Excellent Reverse Recovery: $Q_{rr} = 615 \text{ nC}$
- Low Body Diode V_{FSD}: 1.09 V
- Low Gate Charge: Q_G = 168 nC
- Threshold Voltage VG(th): 4.7 V (typ) Allowing 0 to 15 V Drive
- Low Intrinsic Capacitance
- Kelvin Source Pin for Optimized Switching Performance
- HV Package With 8 mm D-S Creepage Distance
- ESD Protected, HBM Class 2 and CDM Class C3
- AEC-Q101 Qualified and PPAP Capable
- This Device is Pb-Free, Halogen Free and is RoHS Compliant

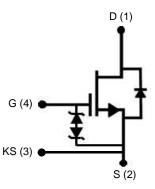
1


Typical Applications

- EV Charging
- PV Inverters
- Switch Mode Power Supplies
- Power Factor Correction Modules
- Motor Drives
- Induction Heating

TO247-4LH CASE 340CV

MARKING DIAGRAM



xxxxxxxxx = Specific Device Number

A = Assembly Location YY = Year

YY = Year WW = Work Week ZZZ = Lot ID

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Value	Unit
Drain-source Voltage	V _{DS}		1200	V
Gate-source Voltage	V_{GS}	DC	-20 to +20	V
		AC (f > 1 Hz)	-25 to +25	V
Continuous Drain Current (Note 1)	I _D	T _C < 100 °C	120	Α
Pulsed Drain Current (Note 2)	I _{DM}	T _C = 25 °C	550	Α
Single Pulsed Avalanche Energy (Note 3)	E _{AS}	L = 15 mH, I _{AS} = 6.5 A	317	mJ
Power Dissipation	P _{tot}	T _C = 25 °C	750	W
SiC FET dv/dt Ruggedness	dv/dt	V _{DS} < 800 V	150	V/ns
Maximum Junction Temperature	$T_{J,max}$		175	°C
Operating and Storage Temperature	T _J , T _{STG}		-55 to 175	°C
Max. Lead Temperature for Soldering, 1/8" from Case for 5 Seconds	TL		250	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Limited by bondwires.
 Pulse width t_p limited by T_{J,max}
 Starting T_J = 25 °C

THERMAL CHARACTERISTICS

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$		ı	0.15	0.20	°C/W

ELECTRICAL CHARACTERISTICS (T_J = +25 °C unless otherwise specified)

Parameter	Symbol	Test Conditi	ons	Min	Тур	Max	Unit
TYPICAL PERFORMANCE - STATIC	•						
Drain-source Breakdown Voltage	BV _{DS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$		1200	-	-	V
Total Drain Leakage Current	I _{DSS}	V _{DS} = 1200 V, V _{GS} = 0	V, T _J = 25 °C	-	5	300	μΑ
		V _{DS} = 1200 V, V _{GS} = 0 T _J = 175°C	V,	-	56	-	
Total Gate Leakage Current	I _{GSS}	V _{DS} = 0 V, T _J = 25 °C, V _{GS} = 20 V/ +20 V		-	6	20	μΑ
Drain-source On-resistance	R _{DS(on)}	$V_{GS} = 12 \text{ V}, I_D = 80 \text{ A}$	T _J = 25 °C	-	9.1	10.6	mΩ
			T _J = 125 °C	-	16.9	-	
			T _J = 175 °C	-	23.3	-	
Gate Threshold Voltage	V _{G(th)}	$V_{DS} = 5 \text{ V}, I_{D} = 10 \text{ mA}$	•	4	4.7	6	V
Gate Resistance	R _G	f = 1 MHz, open drain		-	0.8	1.5	Ω
TYPICAL PERFORMANCE - REVERSE	DIODE						
Diode Continuous Forward Current	Is	T _C < 100 °C		-	_	120	Α
Diode Pulse Current	I _{S,pulse}	T _C = 25 °C		-	-	550	Α
Forward Voltage	V _{FSD}	$V_{GS} = 0 \text{ V}, I_F = 40 \text{ A}, T$	J = 25 °C	-	1.09	1.45	V
		$V_{GS} = 0 \text{ V}, I_{S} = 40 \text{ A}, T$	_J = 175 °C	-	1.31	-	
Reverse Recovery Charge	Q _{rr}	$\begin{aligned} &V_{DS} = 800 \text{ V, } I_{S} = 80 \text{ A, } V_{GS} = 0 \text{ V,} \\ &R_{G_EXT} = 2 \Omega, \text{ di/dt} = 2600 \text{ A/}\mu\text{s,} \\ &T_{J} = 25 ^{\circ}\text{C} \end{aligned}$		-	615	-	nC
Reverse Recovery Time	t _{rr}			-	48	-	ns
Reverse Recovery Charge	Q _{rr}	V _{DS} = 800 V, I _S = 80 A, V _{GS} = 0 V,		-	724	-	nC
Reverse Recovery Time	t _{rr}	$R_{G_EXT} = 2 \Omega$, di/dt = 2	2600 A/μs,	_	55	_	ns

ELECTRICAL CHARACTERISTICS (T_J = +25 °C unless otherwise specified) (continued)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
TYPICAL PERFORMANCE - DYNAMIC	-			-	-	
Input Capacitance	C _{iss}	$V_{DS} = 800 \text{ V}, V_{GS} = 0 \text{ V},$	-	7218	-	pF
Output Capacitance	C _{oss}	f = 100 kHz	-	204	-	
Reverse Transfer Capacitance	C _{rss}		-	0.2	-	
Effective Output Capacitance, Energy Related	C _{oss(er)}	V _{DS} = 0 V to 800 V, V _{GS} = 0 V	-	265	-	pF
Effective Output Capacitance, Time Related	C _{oss(tr)}		=	528	-	pF
C _{oss} Stored Energy	E _{oss}	V _{DS} = 800 V, V _{GS} = 0 V	=	85	=	μJ
Total Gate Charge	Q_{G}	V _{DS} = 800 V, I _D = 80 A,	=	168	=	nC
Gate-drain Charge	Q_{GD}	$V_{GS} = 0 \text{ V to } 15 \text{ V}$	-	28	-	
Gate-source Charge	Q _{GS}		-	50	-	
Turn-on Delay Time	t _{d(on)}	(Notes 4 and 5)	-	40	-	ns
Rise Time	t _r	V _{DS} = 800 V, I _D = 80 A, Gate Driver = 0 V to +15 V,	-	37	-	
Turn-off Delay Time	t _{d(off)}	$R_{G,EXT} = 2 \Omega$, Inductive Load,	-	81	-	1
Fall Time	t _f	FWD: Same Device With	-	16	-	-
Turn-on Energy Including R _S Energy	E _{ON}	V_{GS} = 0 V, R_G = 2 Ω, RC Snubber: R_S = 5 Ω, C_S = 440 pF, T_J = 25 °C	-	1656	-	μJ
Turn-off Energy Including R _S Energy	E _{OFF}		-	255	-	
Total Switching Energy Including R _S Energy	E _{TOTAL}		-	1911	-	
Snubber R _S Energy During Turn-on	E _{RS_ON}		-	19.5	-	
Snubber R _S Energy During Turn-off	E _{RS_OFF}		-	76.5	-	
Turn-on Delay Time	t _{d(on)}	(Notes 4 and 5)	-	36	-	ns
Rise Time	t _r	V _{DS} = 800 V, I _D = 80 A, Gate Driver = 0 V to +15 V,	-	42	-	
Turn-off Delay Time	t _{d(off)}	$R_{G,EXT} = 2 \Omega$, Inductive Load,	-	85	-	1
Fall Time	t _f	FWD: Same Device With	-	18	-	-
Turn-on Energy Including R _S Energy	E _{ON}	V_{GS} = 0 V, R_G = 2 Ω, RC Snubber: R_S = 5 Ω,	-	1940	-	μJ
Turn-off Energy Including R _S Energy	E _{OFF}	$C_S = 440 \text{ pF}, T_J = 150 \text{ °C}$	-	283	-	-
Total Switching Energy Including R _S Energy	E _{TOTAL}		-	2223	-	-
Snubber R _S Energy During Turn-on	E _{RS_ON}		-	18	-	
Snubber R _S Energy During Turn-off	E _{RS_OFF}		-	71	-	-
Turn-on Delay Time	t _{d(on)}	(Notes 5 and 6)	-	40	-	ns
Rise Time	t _r	V _{DS} = 800 V, I _D = 80 A, Gate Driver = 0 V to +15 V,	-	30	-	
Turn-off Delay Time	t _{d(off)}	$R_{G,EXT} = 2 \Omega$, Inductive Load, FWD: UJ3D1250K2,	-	81	-	-
Fall Time	t _f		_	13	-	-
Turn-on Energy Including R _S Energy	E _{ON}	RC Snubber: $R_S = 5 \Omega$, $C_S = 440 \text{ pF}$, $T_J = 25 ^{\circ}\text{C}$	-	918	-	μJ
Turn-off Energy Including R _S Energy	E _{OFF}	1	_	250	-	1
Total Switching Energy Including R _S Energy	E _{TOTAL}	1	-	1168	-	1
Snubber R _S Energy During Turn-on	E _{RS_ON}	1	-	18	-	1
Snubber R _S Energy During Turn-off	E _{RS_OFF}	1	_	113	-	1

ELECTRICAL CHARACTERISTICS (T_J = +25 °C unless otherwise specified) (continued)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
TYPICAL PERFORMANCE - DYNAMIC						
Turn-on Delay Time	t _{d(on)}	(Notes 5 and 6)	-	36	-	ns
Rise Time	t _r	V _{DS} = 800 V, I _D = 80 A, Gate Driver = 0 V to +15 V,	-	34	_	
Turn-off Delay Time	t _{d(off)}	$R_{G,EXT} = 2 \Omega$, Inductive Load,	-	85	_	
Fall Time	t _f	FWD: UJ3D1250K2, RC Snubber: $R_S = 5 \Omega$,	-	14	_	
Turn-on Energy Including R _S Energy	E _{ON}	$C_S = 440 \text{ pF}, T_J = 150 ^{\circ}\text{C}$	-	1040	_	μJ
Turn-off Energy Including R _S Energy	E _{OFF}		-	280	_	
Total Switching Energy Including R _S Energy	E _{TOTAL}		-	1320	_	
Snubber R _S Energy During Turn-on	E _{RS_ON}		-	16.5	_	
Snubber R _S Energy During Turn-off	E _{RS_OFF}	1	-	110	_	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 4. Measured with the switching test circuit in Figure 26.
- 5. In this table, the switching energies (turn-on energy, turn-off energy and total energy) presented include the device RC snubber energy losses.
- 6. Measured with the switching test circuit in Figure 26 where the high-side switch Q1 is replaced with the diode and no RC snubber is applied for the diode.

TYPICAL PERFORMANCE DIAGRAMS

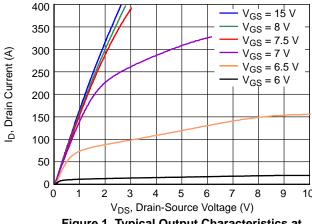


Figure 1. Typical Output Characteristics at $T_J = -55$ °C, $t_p < 250~\mu s$

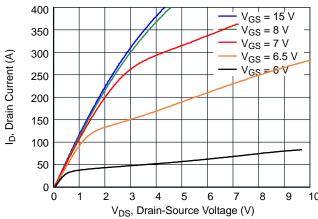


Figure 2. Typical Output Characteristics at T_J = 25 °C, t_p < 250 μs

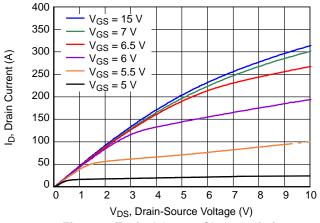


Figure 3. Typical Output Characteristics at $T_J = 175 \, ^{\circ} C, \, t_p < 250 \, \mu s$

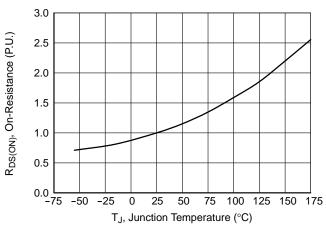


Figure 4. Normalized On-Resistance vs. Temperature at V_{GS} = 12 V and I_D = 80 A

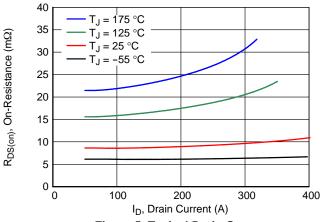


Figure 5. Typical Drain-Source On-Resistances at V_{GS} = 12 V

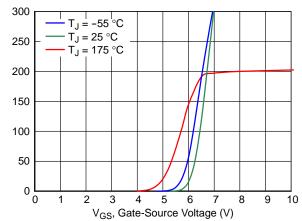


Figure 6. Typical Transfer Characteristics at $V_{DS} = 5 \text{ V}$

I_D, Drain Current (A)

TYPICAL PERFORMANCE DIAGRAMS (continued)

V_{GS}, Gate-Source Voltage (V)

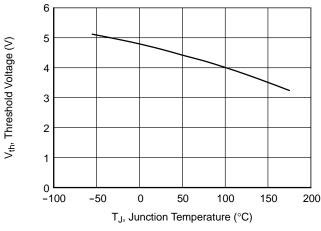


Figure 7. Threshold Voltage vs. Junction Temperature at V_{DS} = 5 V and I_{D} = 10 mA

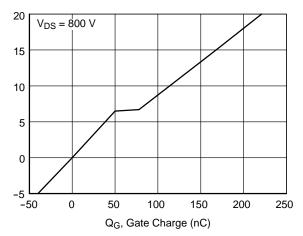


Figure 8. Typical Gate Charge at $I_D = 80 \text{ A}$

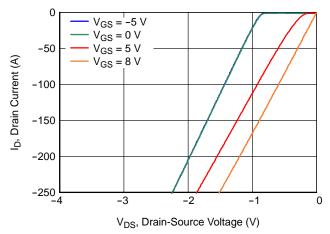


Figure 9. 3^{rd} Quadrant Characteristics at $T_J = -55$ °C

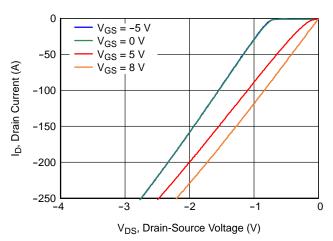


Figure 10. 3^{rd} Quadrant Characteristics at T_J = 25 °C

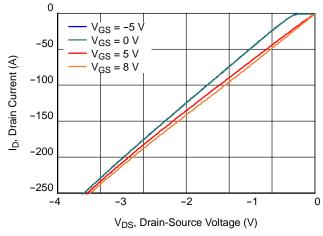


Figure 11. 3^{rd} Quadrant Characteristics at $T_J = 175$ °C

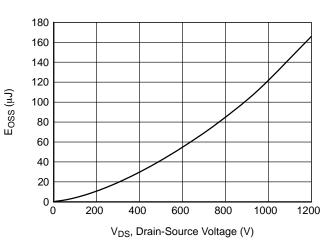


Figure 12. Typical Stored Energy in C_{OSS} at $V_{GS} = 0 \text{ V}$

TYPICAL PERFORMANCE DIAGRAMS (continued)

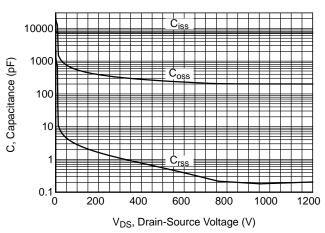


Figure 13. Typical Capacitances at f = 100 kHz and V_{GS} = 0 V

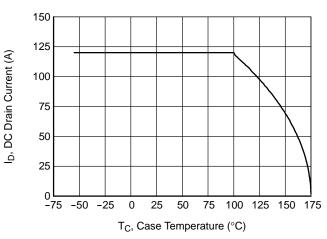


Figure 14. DC Drain Current Derating

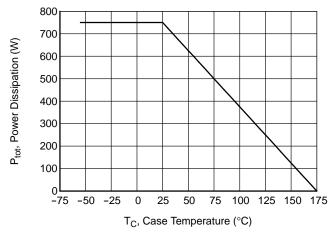


Figure 15. Total Power Dissipation

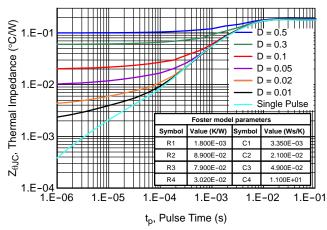


Figure 16. Maximum Transient Thermal Impedance

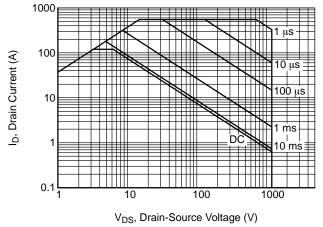


Figure 17. Safe Operation Area at $T_C = 25$ °C, D = 0, Parameter t_D

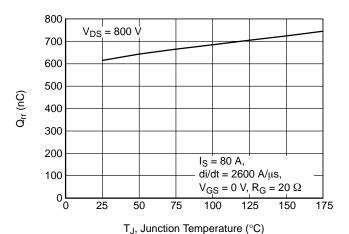


Figure 18. Reverse Recovery Charge Q_{rr} vs. Junction Temperature

TYPICAL PERFORMANCE DIAGRAMS (continued)

Snubber R_S Energy (μJ)

Snubber R_S Energy (μJ)

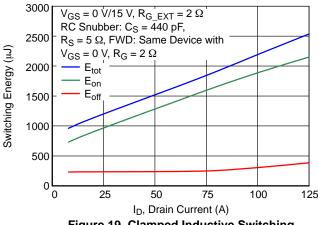


Figure 19. Clamped Inductive Switching Energy vs. Drain Current at V_{DS} = 800 V and T_{J} = 25 $^{\circ}$ C

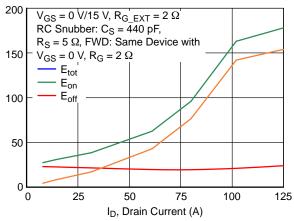


Figure 20. RC Snubber Energy Loss vs. Drain Current at V_{DS} = 800 V and T_J = 25 °C

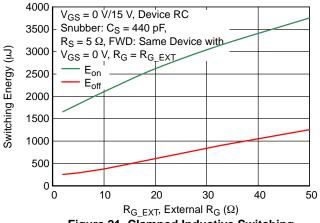


Figure 21. Clamped Inductive Switching Energy vs. R_{G_EXT} at V_{DS} = 800 V, I_{D} = 80 A and T_{J} = 25 °C

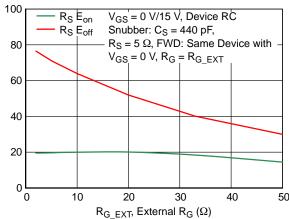


Figure 22. Rc Snubber Energy Loss vs. R_{G_EXT} at V_{DS} = 800 V, I_{D} = 80 A and T_{J} = 25 °C

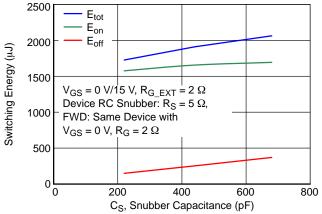


Figure 23. Clamped Inductive Switching Energies vs. Snubber Capacitance C_S at $V_{DS} = 800 \text{ V}$, $I_D = 80 \text{ A}$ and $T_J = 25 \,^{\circ}\text{C}$

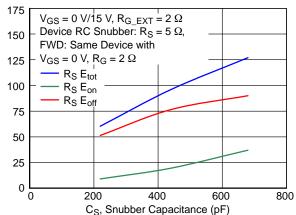


Figure 24. Rc Snubber Energy Losses vs. Snubber Capacitance at V_{DS} = 800 V, I_{D} = 80 A and T_{J} = 25 °C

Snubber R_S Energy (μJ)

TYPICAL PERFORMANCE DIAGRAMS (continued)

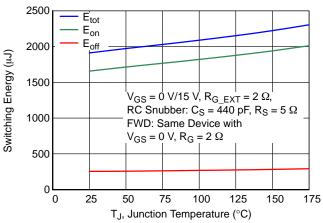


Figure 25. Clamped Inductive Switching Energy vs. Junction Temperature at V_{DS} = 800 V, I_{D} = 80 A

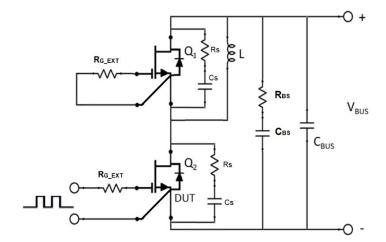
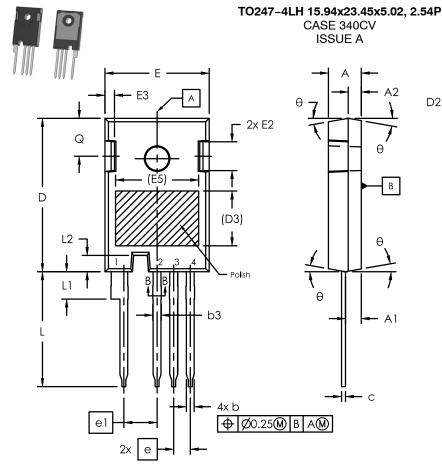
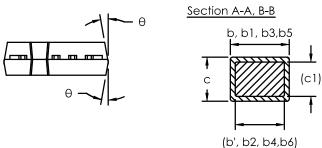


Figure 26. Schematic of the Half-Bridge Mode Switching Test Circuit. Note, a Bus RC Snubber (R_{BS} = 5 Ω , C_{BS} = 100 nF) Is Used To Reduce the Power Loop High Frequency Oscillations


ORDERING INFORMATION


Part Number	Marking	Package	Shipping [†]
UF4SC120009K4SH	UF4SC120009K4SH	TO247-4LH (Pb-Free, Halogen Free)	600 / Tube

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

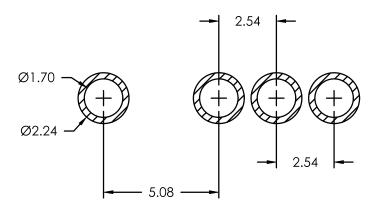
DATE 12 FEB 2025

NOTE:

- 1. Dimensioning and tolerancing as per ASME Y14.5 2018
- 2. Controlling Dimensions = Millimeters
- 3. Dimensions D and E does not include MOLD FLASH
- 4. Thermal pad contour optional within dimensions D1 and E1
- 5. Lead finish uncontrolled in L1
- 6. ØP to have a max draft angle of 1.5° to the top with MAX. hole diameter of 3.91mm

D2]	E1 —— E4 ——	s
D1		ØP
<u> </u>		ØP1
ļ	4 3 2 1	↓ A → b1

	TOO	47 4111						
TO247-4LH								
0) () (mm							
SYM	MIN	NOM	MAX					
Α	4.80	5.02	5.21					
A1	2.21	2.41	2.61					
A2	1.80	2.00	2.20					
b	1.06	1.20	1.36 1.28					
þ'	1.07	1.20	1.28					
bl	2.33	2.53	2.94					
b3	1.07	1.20	1.60					
b5	2.40	2.54	2.69					
b6	2.39	2.54 2.53	2.69 2.64					
	0.51	0.60	0.75					
υ <u></u> υ	0.51	0.60	0.72					
D	23.30	23.45	23.60					
D1	16.25	16.55	17.65					
D2	0.95	1.19	1.25					
D3		8.38 REF						
E	15.74	15.94	16.14					
E1	13.10	14.02	14.32					
E2	3.68	4.40	5.10					
E3	1.00	1.45	1.90					
E4	12.38	13.26	13.43					
E5		12.70 REF						
е		2.54 BSC						
el		5.08 BSC						
L	17.27	17.57	17.87					
L1	3.97	4.19	4.39					
L2	2.35	2.50	2.65					
ØΡ	3.40	3.61	3.80					
ØP1		7.19 REF						
Q	5.49	5.79	6.09					
S	6.04	6.17	6.30					
θ		10°						


DOCUMENT NUMBER:	98AON80645G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO247-4LH 15.94x23.45x5	TO247-4LH 15.94x23.45x5.02, 2.54P			

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

T0247-4LH 15.94x23.45x5.02, 2.54P CASE 340CV ISSUE A

DATE 12 FEB 2025

RECOMMENDED PCB THROUGH HOLE

NOTE: LAND PATTERN AND THROUGH HOLE DIMENSIONS SERVE ONLY AS AN INITIAL GUIDE. END-USER PCB DESIGN RULES AND TOLERANCES SHOULD ALWAYS PREVAIL.

DOCUMENT NUMBER:	98AON80645G	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO247-4LH 15.94x23.45x5	.02, 2.54P	PAGE 2 OF 2		

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales