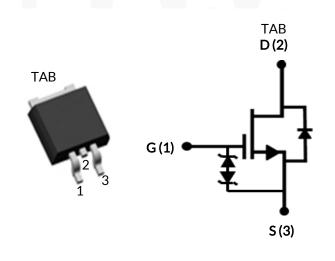
SiC JFET Division

Is Now Part of


Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actal performance may vary over time. All opreating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death asso

DATASHEET

UF3C065040B3

Part Number	Package	Marking
UF3C065040B3	D ² PAK-3L	UF3C065040B3

Silicon Carbide (SiC) Cascode JFET -EliteSiC, Power N-Channel, D2PAK-3L, 650 V, 42 mohm

Rev. D, January 2025

Description

This SiC FET device is based on a unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows for a true "drop-in replacement" to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction devices. Available in the D²PAK-3L package, this device exhibits ultralow gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads when used with recommended RC-snubbers, and any application requiring standard gate drive.

Features

- Typical on-resistance R_{DS(on),typ} of 42mΩ
- Maximum operating temperature of 175°C
- Excellent reverse recovery
- Low gate charge
- Low intrinsic capacitance
- ESD protected, HBM class 2

• Very low switching losses (required RC-snubber loss negligible under typical operating conditions)

Typical applications

- EV charging
- PV inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V _{DS}		650	V
Gate-source voltage	V _{GS}	DC	-25 to +25	V
Continuous drain current ¹		T _C = 25°C	41	А
Continuous drain current	ID	T _C = 100°C	30	А
Pulsed drain current ²	I _{DM}	T _C = 25°C	125	А
Single pulsed avalanche energy ³	E _{AS}	L=15mH, I _{AS} =3.19A	76	mJ
Power dissipation	P _{tot}	T _C = 25°C	176	W
Maximum junction temperature	T _{J,max}		175	°C
Operating and storage temperature	T J, T _{STG}		-55 to 175	°C
Reflow soldering temperature	T _{solder}	reflow MSL 1	245	°C

1. Limited by $T_{J,max}$

2. Pulse width t_{p} limited by $T_{J,\text{max}}$

3. Starting $T_J = 25^{\circ}C$

Thermal Characteristics

Parameter	Symbol	Test Conditions		Units		
	Symbol		Min	Тур	Max	Units
Thermal resistance, junction-to-case	$R_{\theta JC}$			0.65	0.85	°C/W

FET-Jet Calculator 😵 Buy Online Spice Models Spice Solution Sales Learn More

Electrical Characteristics (T_J = +25°C unless otherwise specified)

Typical Performance - Static

Deveneter	Cump hal	Test Conditions			Units		
Parameter	Symbol	lest Conditions	Min	Тур	Max	Units	
Drain-source breakdown voltage	rain-source breakdown voltage BV _{DS} V _{GS} =0V, I _D =1mA		650			V	
		V _{DS} =650V, V _{GS} =0V, T _J =25°C	0.7 150		150		
Total drain leakage current	I _{DSS}	V _{DS} =650V, V _{GS} =0V, T _J =175°C		10		μA	
Total gate leakage current	I _{GSS}	V _{DS} =0V, T _J =25°C, V _{GS} =-20V / +20V		6	±20	μA	
		V _{GS} =12V, I _D =30A, T _J =25°C		42	52		
Drain-source on-resistance	R _{DS(on)}	V _{GS} =12V, I _D =30A, T _J =125°C		59		mΩ	
		V _{GS} =12V, I _D =30A, T _J =175°C		78			
Gate threshold voltage	V _{G(th)}	V_{DS} =5V, I_{D} =10mA	4	5	6	V	
Gate resistance	R _G	f=1MHz, open drain		4.5		Ω	

Typical Performance - Reverse Diode

Parameter	Cump hal	Test Conditions			- Units	
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Diode continuous forward current ¹	ls	T _C =25°C			41	А
Diode pulse current ²	I _{S,pulse}	T _C =25°C			125	А
Forward voltage	V _{FSD}	V _{GS} =0V, I _S =20A, T _J =25°C		1.5	1.75	V
Forward voltage	V FSD	V _{GS} =0V, I _S =20A, T _J =175°C		1.8		•
Reverse recovery charge	Q _{rr}	V _R =400V, I _S =30A, V _{GS} =-5V, R _{G_EXT} =22Ω		138		nC
Reverse recovery time	t _{rr}	di/dt=1600A/µs, T_=25°C		26		ns
Reverse recovery charge	Q _{rr}	V _R =400V, I _S =30A, V _{GS} =-5V, R _{G_EXT} =22Ω		137		nC
Reverse recovery time	t _{rr}	di/dt=1600A/µs, T_j=150°C		26		ns

Typical Performance - Dynamic

Deversites	Course la sel	Test Conditions			Units			
Parameter	Symbol	Test Conditions –	Min	Тур	Max	Units		
Input capacitance	C _{iss}	- V _{DS} =100V, V _{GS} =0V -		1500				
Output capacitance	C _{oss}	$v_{DS} = 100 \text{ v}, v_{GS} = 0 \text{ v}$ = f=100kHz		200		pF		
Reverse transfer capacitance	C _{rss}			2.2				
Effective output capacitance, energy related	$C_{oss(er)}$	V_{DS} =0V to 400V, V_{GS} =0V		146		pF		
Effective output capacitance, time related	C _{oss(tr)}	$V_{DS}=0V$ to 400V, $V_{GS}=0V$		325		pF		
C _{OSS} stored energy	E _{oss}	V _{DS} =400V, V _{GS} =0V		11.7		μJ		
Total gate charge	Q _G	– V _{DS} =400V, I _D =30A, –		51				
Gate-drain charge	Q_{GD}	$V_{\rm DS} = 400 \text{ V}, \text{ I}_{\rm D} = 30 \text{ A}, \text{ I}_{\rm S} = -5 \text{ V} \text{ to } 15 \text{ V}$		11		nC		
Gate-source charge	Q _{GS}	VGS - 5V (015V		19				
Turn-on delay time	t _{d(on)}			34				
Rise time	t _r	V _{DS} =400V, I _D =30A, Gate		15				
Turn-off delay time	t _{d(off)}	Driver =-5V to +15V,		57		ns		
Fall time	t _f	Turn-on $R_{G,EXT}$ =1.8 Ω ,		12				
Turn-on energy including R _s energy ⁴	E _{ON}	- Turn-off R _{G,EXT} =22Ω $-$ Inductive Load, $-$		327				
Turn-off energy including R _s energy ⁴	E _{OFF}	FWD: same device with		65		μJ		
Total switching energy including R_s energy ⁴	E _{total}	V_{GS} = -5V and R_{G} = 22 Ω , RC snubber: R_{S} =5 Ω and		392				
Snubber R _s energy during turn-on	E _{RS_ON}	С _s =150pF, Т _J =25°С		1.5				
Snubber R_s energy during turn-off	E _{RS_OFF}	-		3				
Turn-on delay time	t _{d(on)}			33				
Rise time	t _r	V _{DS} =400V, I _D =30A, Gate		15				
Turn-off delay time	t _{d(off)}	Driver =-5V to +15V,		58		ns		
Falltime	t _f	Turn-on $R_{G,EXT}$ =1.8 Ω ,		13		1		
Turn-on energy including R _S energy ⁴	E _{ON}	$- \text{Turn-off } R_{G,EXT} = 22\Omega $ $- \text{Inductive Load,} $		314				
Turn-off energy including R _s energy ⁴	E _{OFF}	FWD: same device with		66				
Total switching energy including R_s energy ⁴	E _{total}	V_{GS} = -5V and R_{G} = 22 Ω , RC snubber: R_{S} =5 Ω and		380		μJ		
Snubber R _s energy during turn-on	E _{RS_ON}	C _S =150pF, T _J =150°C		1.5		1		
Snubber R _s energy during turn-off	E _{RS_OFF}			2.9				

4. The switching performance are evaluated with a RC snubber circuit as shown in Figure 24.

⊒	FET-Jet Calculator	P	Buy Online	ů ů	Spice Models		Contact Sales	20	Learn More
---	-----------------------	---	---------------	--------	-----------------	--	------------------	----	---------------

Typical Performance Diagrams

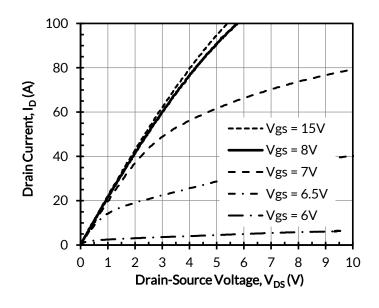


Figure 1. Typical output characteristics at $T_{\rm J}$ = - 55°C, tp < 250 μs

Figure 2. Typical output characteristics at T $_{\rm J}$ = 25°C, tp < 250 μs

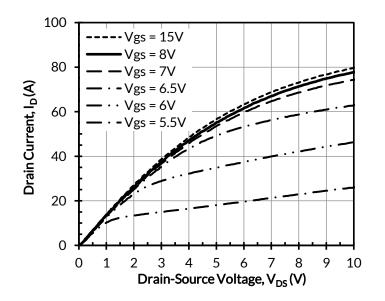


Figure 3. Typical output characteristics at T $_{\rm J}$ = 175°C, tp < 250 μs

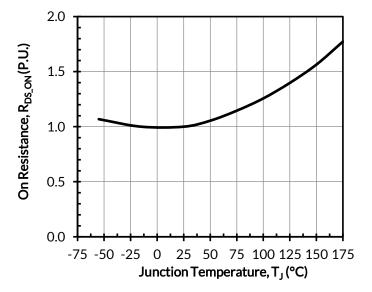
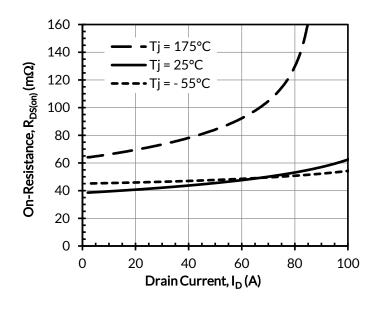
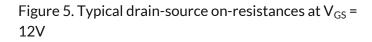




Figure 4. Normalized on-resistance vs. temperature at V_{GS} = 12V and I_D = 30A

FET-Jet Calculator	F	Buy Online	3	Spice Models		Contact Sales		Learn More
-----------------------	---	---------------	----------	-----------------	--	------------------	--	---------------

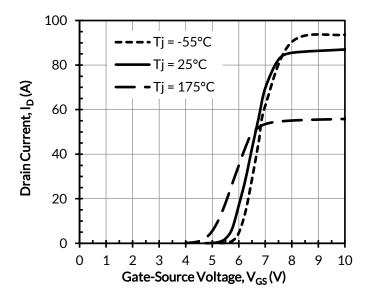


Figure 6. Typical transfer characteristics at V_{DS} = 5V

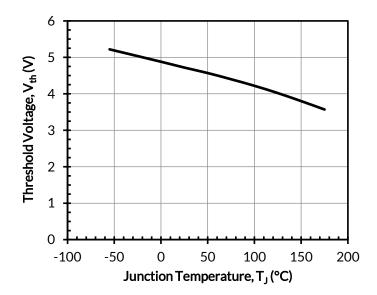


Figure 7. Threshold voltage vs. junction temperature at V_{DS} = 5V and I_{D} = 10mA

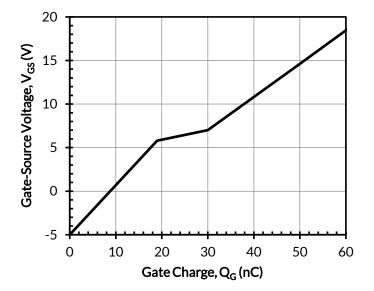


Figure 8. Typical gate charge at V_{DS} = 400V and I_{D} = 30A

	FET-Jet Calculator	F	Buy Online	د د	Spice Models		Contact Sales		Learn More
--	-----------------------	---	---------------	-------------------	-----------------	--	------------------	--	---------------

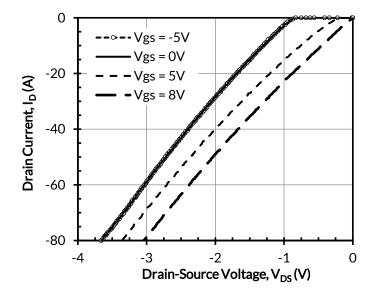


Figure 9. 3rd quadrant characteristics at $T_J = -55^{\circ}C$

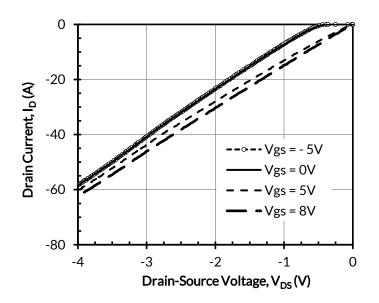


Figure 11. 3rd quadrant characteristics at T_J = 175°C

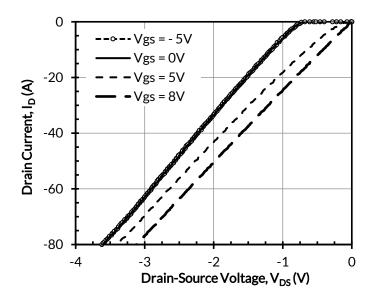


Figure 10. 3rd quadrant characteristics at T_J = 25°C

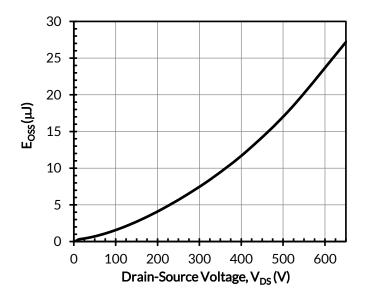


Figure 12. Typical stored energy in C_{OSS} at V_{GS} = 0V

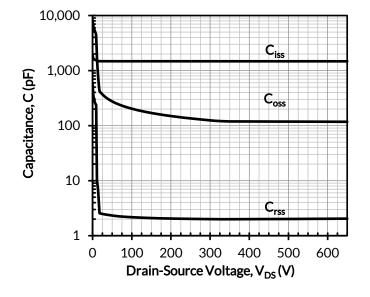


Figure 13. Typical capacitances at f = 100kHz and V_{GS} = 0V

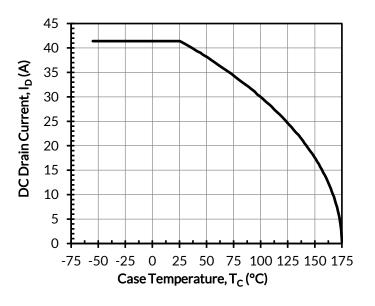


Figure 14. DC drain current derating

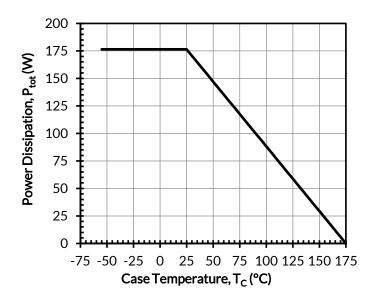


Figure 15. Total power dissipation

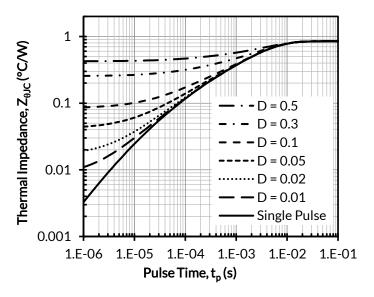


Figure 16. Maximum transient thermal impedance

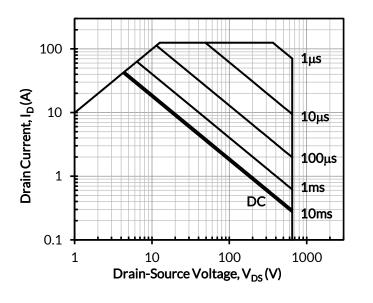
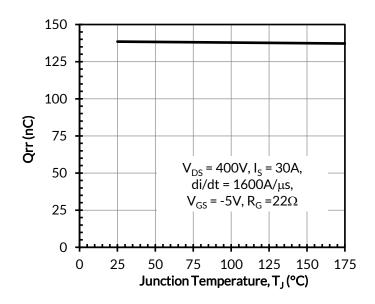
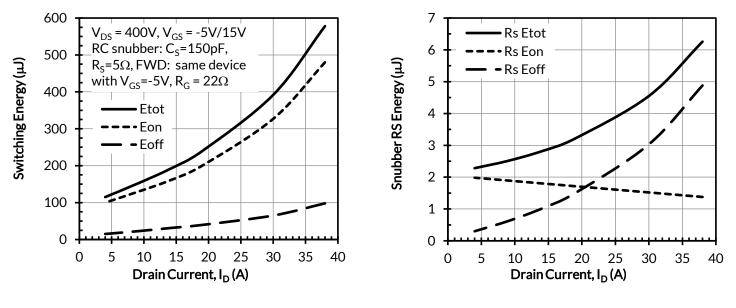



Figure 17. Safe operation area at T_{C} = 25°C, D = 0, Parameter $t_{\rm p}$

Spice

Models

Contact


Sales

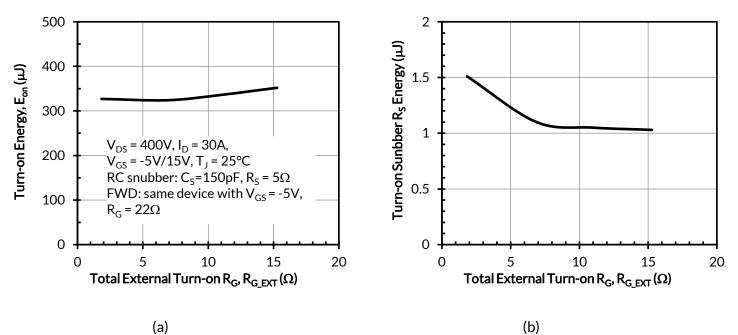
Learn

More

Buy Online

Figure 18. Reverse recovery charge Qrr vs. junction temperture

FET-Jet


Calculator

(a)

(b)

Figure 19. Clamped inductive switching energy (a) and RC snubber energy loss (b) vs. drain current at $T_J = 25^{\circ}$ C, turn-on $R_{G_{EXT}} = 1.8\Omega$, and turn-off $R_{G_{EXT}} = 22\Omega$

FET-Jet

Calculator

<u>.</u>

(b)

Buy Online Spice

Models

Contact

Sales

Learn

More

Figure 20. Clamped inductive switching turn-on energy including RC snubber energy loss (a) and RC snubber energy loss (b) as a function of total external turn-on gate resistor $R_{G_{EXT}}$

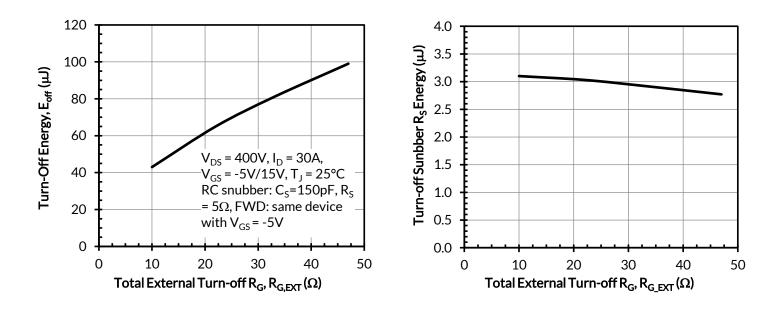


Figure 21. Clamped inductive switching turn-off energy including RC snubber energy loss (a) and RC snubber energy loss (b) as a function of total external turn-off gate resistor $R_{G EXT}$

(a)

	FET-Jet Calculator	V	Buy Online	0 ,0	Spice Models		Contact Sales		Learn More
--	-----------------------	---	---------------	-------------	-----------------	--	------------------	--	---------------

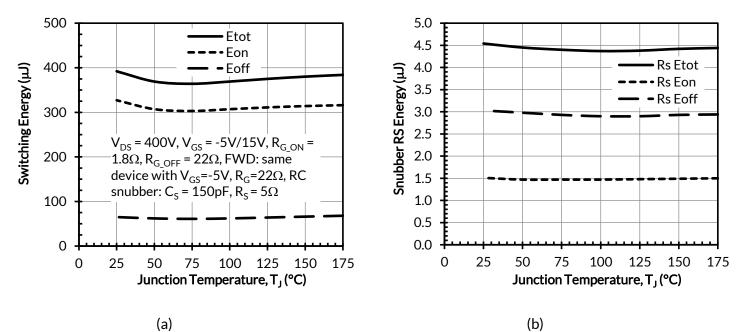
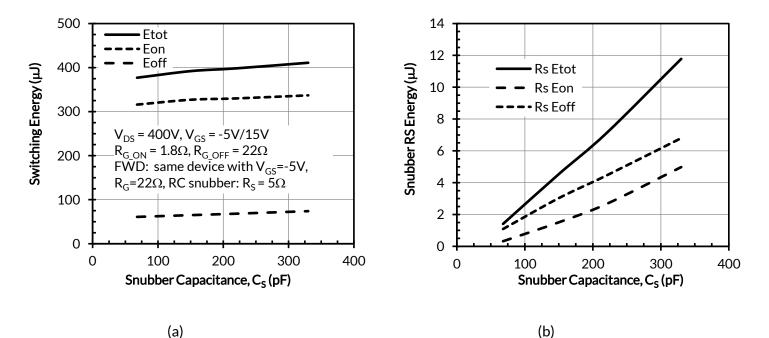
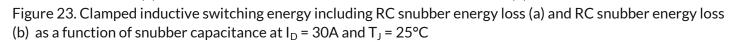




Figure 22. Clamped inductive switching energy including RC snubber energy loss (a) and RC snubber energy loss (b) as a function of junction temperature at $I_D = 30A$

QONOD

	FET-Jet Calculator	F	Buy Online	్టిం	Spice Models		Contact Sales		Learr More
--	-----------------------	---	---------------	------	-----------------	--	------------------	--	---------------

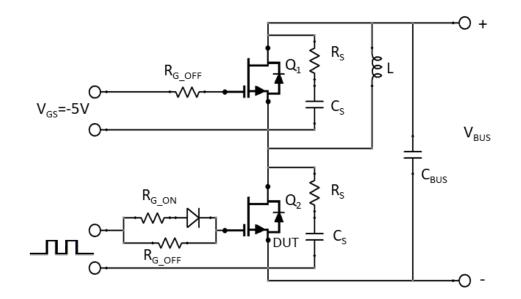


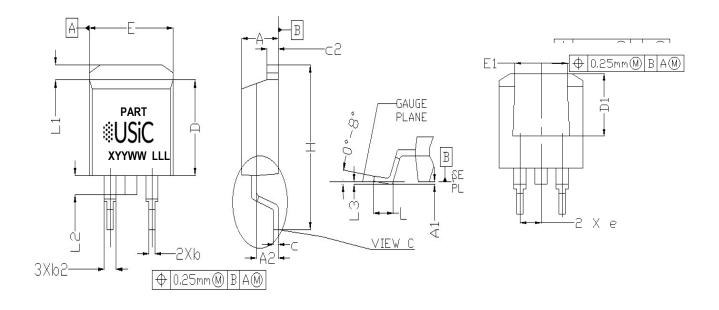
Figure 24. Clamped inductive load switching test circuit An RC snubber ($R_s = 5\Omega$ and $C_s = 150$ pF) is required to improve the turn-off waveforms.

Applications Information

SiC FETs are enhancement-mode power switches formed by a high-voltage SiC depletion-mode JFET and a low-voltage silicon MOSFET connected in series. The silicon MOSFET serves as the control unit while the SiC JFET provides high voltage blocking in the off state. This combination of devices in a single package provides compatibility with standard gate drivers and offers superior performance in terms of low on-resistance ($R_{DS(on)}$), output capacitance (C_{oss}), gate charge (Q_G), and reverse recovery charge (Q_{rr}) leading to low conduction and switching losses. The SiC FETs also provide excellent reverse conduction capability eliminating the need for an external anti-parallel diode.

Like other high performance power switches, proper PCB layout design to minimize circuit parasitics is strongly recommended due to the high dv/dt and di/dt rates. An external gate resistor is recommended when the FET is working in the diode mode in order to achieve the optimum reverse recovery performance. For more information on SiC FET operation, see www.unitedsic.com.

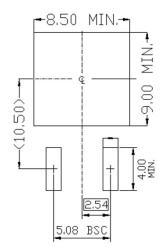
A snubber circuit with a small $R_{(G)}$, or gate resistor, provides better EMI suppression with higher efficiency compared to using a high $R_{(G)}$ value. There is no extra gate delay time when using the snubber circuitry, and a small $R_{(G)}$ will better control both the turn-off $V_{(DS)}$ peak spike and ringing duration, while a high $R_{(G)}$ will damp the peak spike but result in a longer delay time. In addition, the total switching loss when using a snubber circuit is less than using high $R_{(G)}$, while greatly reducing $E_{(OFF)}$ from mid-to-full load range with only a small increase in $E_{(ON)}$. Efficiency will therefore improve with higher load current. For more information on how a snubber circuit will improve overall system performance, visit the UnitedSiC website at www.unitedsic.com


Important notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

TO263 (D2PAK)-3L PACKAGE OUTLINE, PART MARKING AND TAPE AND REEL SPECIFICATIONS

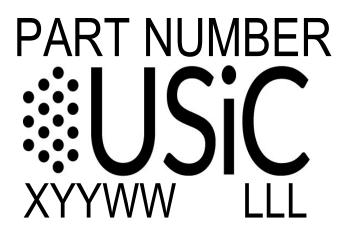
PACKAGE OUTLINE



SYM	INC	HES	MILLIN	NETERS
	MIN	МАХ	MIN	МАХ
А	0.160	0.190	4.064	4.826
A1	0.000	0.010	0.00	0.254
A2	0.087	0.114	2.20	2.8956
b	0.020	0.039	0.508	0.9906
b2	0.045	0.07	1.143	1.778
с	0.015	0.029	0.381	0.7366
c2	0.045	0.065	1.143	1.651
D	0.330	0.380	8.382	9.652
D1	0.270	0.330	6.858	8.37
е	0.100) BSC	2.54	BSC
E	0.380	0.420	9.652	10.668
E1	0.245	0.330	6.223	8.37
Н	0.575	0.625	14.605	15.875
L	0.070	0.110	1.778	2.794
L1	0.040	0.066	1.02	1.6764
L2	0.050	0.07	1.27 1.778	
L3	0.010) BSC	0.25	BSC

TO263 (D2PAK)-3L PACKAGE OUTLINE, PART MARKING AND TAPE AND REEL SPECIFICATIONS

PCB LAND PATTERN

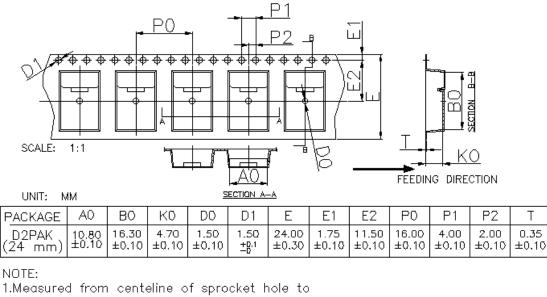

Notes:

- 1. PACKAGE BODY SIDES EXCLUDE MOLD FLASH AND GATE BURRS.
- 2. TOLERANCE 0.10MILLIMETERS UNLESS OTHERWISE SPECIFIED.
- 3. DIMENSION L IS MEASURED IN GAUGE LINE.
- 4. CONTROLLING DIMENSION IS MILLIMETER.
- CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT. 5. REFER TO JEDEC TO-263AB.

TO263 (D2PAK)-3L PACKAGE OUTLINE, PART MARKING AND TAPE AND REEL SPECIFICATIONS

PART MARKING

PART NUMBER = REFER TO DS_PN DECODER FOR DETAILS

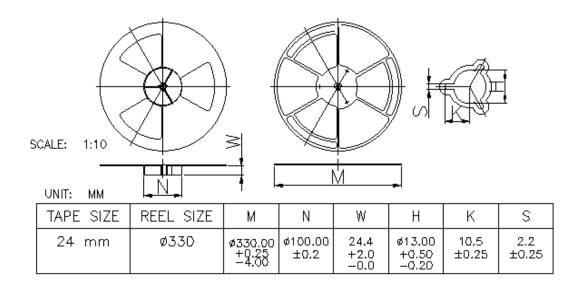

X = ASSEMBLY SITE YY = YEAR WW = WORK WEEK LLL = LOT ID

PACKING TYPE

ANTI-STATIC TAPE & REEL (T&R)

QUANTITY / REEL : 800 UNITS

CARRIER TAPE DRAWING


centreline of pocket.

2.Cumulative tolerance of 10 sprocket holes is ± 0.20 .

3.Camber not to exceed 2mm in 200mm

REEL DRAWING

DISCLAIMER

United Silicon Carbide, Inc. reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. United Silicon Carbide, Inc. assumes no responsibility or liability for any errors or inaccuracies within.

Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document.

United Silicon Carbide, Inc. assumes no liability whatsoever relating to the choice, selection or use of the United Silicon Carbide, Inc. products and services described herein.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>