

## IGBT - Power, Co-PAK, N-Channel, Field Stop VII, (FS7), SCR, Power TO247-3L 1200 V, 1.4 V, 25 A FGHL25T120RWD

## Description

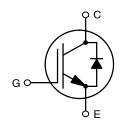
Using the novel field stop 7th generation IGBT technology and the Gen7 Diode in TO247 3-lead package, this device offers the optimum performance with low on state voltage and minimal switching losses for both hard and soft switching topologies in industrial applications.

#### **Features**

- Extremely Efficient Trench with Field Stop Technology
- Maximum Junction Temperature  $T_J = 175$ °C
- Short Circuit Rated and Low Saturation Voltage
- Fast Switching and Tightened Parameter Distribution
- This Device is Pb–Free, Halogen Free/BFR Free and is RoHS Compliant

#### **Applications**

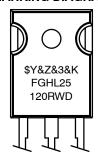
- Motor Drive
- UPS
- Energy Storage System
- General Inverter for Low Conduction Loss Applications


#### **MAXIMUM RATINGS** (T<sub>J</sub> = 25°C unless otherwise noted)

| Parame                                                                                                  | Symbol                                                                               | Value                             | Unit           |    |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------|----------------|----|
| Collector-to-Emitter Voltage                                                                            |                                                                                      | $V_{CE}$                          | 1200           | V  |
| Gate-to-Emitter Voltage                                                                                 |                                                                                      | $V_{GE}$                          | ±20            |    |
| Transient Gate-to-Emitte                                                                                | er Voltage                                                                           |                                   | ±30            |    |
| Collector Current                                                                                       | T <sub>C</sub> = 25°C                                                                | I <sub>C</sub>                    | 50             | Α  |
|                                                                                                         | T <sub>C</sub> = 100°C                                                               |                                   | 25             |    |
| Power Dissipation                                                                                       | T <sub>C</sub> = 25°C                                                                | $P_{D}$                           | 468            | W  |
|                                                                                                         | T <sub>C</sub> = 100°C                                                               |                                   | 234            |    |
| Pulsed Collector<br>Current                                                                             | $T_{\rm C} = 25^{\circ}{\rm C},$<br>$t_{\rm p} = 10 \ \mu{\rm s} \ ({\rm Note} \ 1)$ | I <sub>CM</sub>                   | 75             | Α  |
| Diode Forward Current $T_C = 25^{\circ}C$                                                               |                                                                                      | I <sub>F</sub>                    | 50             |    |
|                                                                                                         | T <sub>C</sub> = 100°C                                                               |                                   | 25             |    |
| Pulsed Diode Maximum<br>Forward Current                                                                 | $T_{C} = 25^{\circ}C,$<br>$t_{p} = 10 \ \mu s$<br>(Note 1)                           | I <sub>FM</sub>                   | 75             |    |
| Short Circuit Withstand Time<br>V <sub>GE</sub> = 15 V, V <sub>CC</sub> = 800 V, T <sub>C</sub> = 150°C |                                                                                      | T <sub>SC</sub>                   | 6              | μs |
| Operating Junction and Storage<br>Temperature Range                                                     |                                                                                      | T <sub>J</sub> , T <sub>stg</sub> | -55 to<br>+175 | °C |
| Lead Temperature for So                                                                                 | T <sub>L</sub>                                                                       | 260                               |                |    |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1


| BV <sub>CES</sub> | V <sub>CE(sat)</sub> TYP | I <sub>C</sub> MAX |
|-------------------|--------------------------|--------------------|
| 1200 V            | 1.4 V                    | 25 A               |



#### **COPACK IGBT**



#### **MARKING DIAGRAM**



\$Y = onsemi Logo &Z = Assembly Plant Code &3 = 3-Digit Date Code &K = 2-Digit Lot Traceability Code FGHL25120RWD = Specific Device Code

#### **ORDERING INFORMATION**

| Device        | Package               | Shipping        |
|---------------|-----------------------|-----------------|
| FGHL25T120RWD | TO247-3L<br>(Pb-Free) | 30 Units / Tube |

<sup>1.</sup> Repetitive rating: Pulse width limited by max. junction temperature

## THERMAL CHARACTERISTICS

| Parameter                                      | Symbol          | Value | Unit |
|------------------------------------------------|-----------------|-------|------|
| Thermal Resistance Junction-to-Case, for IGBT  | $R_{\theta JC}$ | 0.32  | °C/W |
| Thermal Resistance Junction-to-Case, for Diode |                 | 0.59  |      |
| Thermal Resistance Junction-to-Ambient         | $R_{\theta JA}$ | 40    |      |

#### **ELECTRICAL CHARACTERISTICS OF IGBT**

| Parameter                                                         | Symbol                               | Test Conditions                                                       | Min  | Тур  | Max  | Unit  |
|-------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------|------|------|------|-------|
| OFF CHARACTERISTICS (T <sub>J</sub> = 25°C unle                   | ess otherwise spec                   | cified)                                                               |      | •    | -    |       |
| Collector-to-Emitter Breakdown<br>Voltage                         | BV <sub>CES</sub>                    | V <sub>GE</sub> = 0 V, I <sub>C</sub> = 1 mA                          | 1200 | _    | _    | V     |
| Collector-to-Emitter Breakdown<br>Voltage Temperature Coefficient | ΔBV <sub>CES</sub> / ΔT <sub>J</sub> | V <sub>GE</sub> = 0 V, I <sub>C</sub> = 9.99 mA                       | -    | 1226 | -    | mV/°C |
| Zero Gate Voltage Collector Current                               | I <sub>CES</sub>                     | V <sub>GE</sub> = 0 V, V <sub>CE</sub> = V <sub>CES</sub>             | -    | -    | 40   | μΑ    |
| Gate-to-Emitter leakage Current                                   | I <sub>GES</sub>                     | V <sub>GE</sub> = ±20 V, V <sub>CE</sub> = 0 V                        | ı    | -    | ±400 | nA    |
| ON CHARACTERISTICS                                                |                                      |                                                                       |      |      |      |       |
| Gate Threshold Voltage                                            | V <sub>GE(th)</sub>                  | $V_{GE} = V_{CE}, I_{C} = 25 \text{ mA}, T_{J} = 25^{\circ}\text{C}$  | 5.1  | 6.0  | 6.9  | V     |
| Gate-to-Emitter Saturation Voltage                                | V <sub>CE(sat)</sub>                 | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 25 A, T <sub>J</sub> = 25°C  | -    | 1.40 | 1.73 | V     |
|                                                                   |                                      | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 25 A, T <sub>J</sub> = 175°C | -    | 1.62 | -    |       |
| DYNAMIC CHARACTERISTICS                                           |                                      |                                                                       |      |      |      |       |
| Input Capacitance                                                 | C <sub>IES</sub>                     | V <sub>CE</sub> = 30 V, V <sub>GE</sub> = 0 V, f = 1 MHz              | -    | 3054 | _    | pF    |
| Output Capacitance                                                | C <sub>OES</sub>                     |                                                                       | -    | 126  | _    | 1     |
| Reverse Transfer Capacitance                                      | C <sub>RES</sub>                     |                                                                       | -    | 15.4 | -    |       |
| Total Gate Charge                                                 | $Q_{G}$                              | V <sub>CE</sub> = 600 V, I <sub>C</sub> = 25 A,                       | -    | 113  | -    | nC    |
| Gate-to-Emitter Charge                                            | $Q_{GE}$                             | V <sub>GE</sub> = 15 V                                                | -    | 27.2 | -    | 1     |
| Gate-to-Collector Charge                                          | Q <sub>GC</sub>                      |                                                                       | -    | 49.5 | -    |       |
| SWITCHING CHARACTERISTIC, INDUC                                   | TIVE LOAD                            |                                                                       |      |      |      |       |
| Turn-On Delay Time                                                | t <sub>d(on)</sub>                   | V <sub>CE</sub> = 600 V, V <sub>GE</sub> = 0/15 V,                    | -    | 33.8 | -    | ns    |
| Turn-Off Delay Time                                               | t <sub>d(off)</sub>                  | $I_C = 12.5 \text{ A}, R_G = 4.7 \Omega, T_J = 25^{\circ}\text{C}$    | -    | 223  | -    |       |
| Rise Time                                                         | t <sub>r</sub>                       |                                                                       | -    | 19.7 | -    |       |
| Fall Time                                                         | t <sub>f</sub>                       |                                                                       | -    | 192  | -    |       |
| Turn-On Switching Loss                                            | E <sub>on</sub>                      |                                                                       | -    | 0.55 | -    | mJ    |
| Turn-Off Switching Loss                                           | E <sub>off</sub>                     |                                                                       | -    | 0.86 | -    |       |
| Total Switching Loss                                              | E <sub>ts</sub>                      |                                                                       | -    | 1.41 | -    |       |
| Turn-On Delay Time                                                | t <sub>d(on)</sub>                   | V <sub>CE</sub> = 600 V, V <sub>GE</sub> = 0/15 V,                    | -    | 36.9 | -    | ns    |
| Turn-Off Delay Time                                               | t <sub>d(off)</sub>                  | $I_C = 25 \text{ A}, R_G = 4.7 \Omega, T_J = 25^{\circ}\text{C}$      | -    | 175  | -    |       |
| Rise time                                                         | t <sub>r</sub>                       |                                                                       | -    | 35.4 | _    |       |
| Fall Time                                                         | t <sub>f</sub>                       |                                                                       | -    | 126  | -    |       |
| Turn-On Switching Loss                                            | E <sub>on</sub>                      |                                                                       | -    | 1.57 | -    | mJ    |
| Turn-Off Switching Loss                                           | E <sub>off</sub>                     |                                                                       | -    | 1.06 | -    |       |
| Total Switching Loss                                              | E <sub>ts</sub>                      | 1                                                                     | -    | 2.62 | -    |       |

## **ELECTRICAL CHARACTERISTICS OF IGBT** (continued)

| Parameter                       | Symbol              | Test Conditions                                                                                                                  | Min | Тур  | Max | Unit |
|---------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|------|
| SWITCHING CHARACTERISTIC, INDUC | CTIVE LOAD          |                                                                                                                                  |     |      |     |      |
| Turn-On Delay Time              | t <sub>d(on)</sub>  | $V_{CE} = 600 \text{ V}, V_{GE} = 0/15 \text{ V}, \\ I_{C} = 12.5 \text{ A}, R_{G} = 4.7 \Omega, \\ T_{J} = 175^{\circ}\text{C}$ | -   | 37.7 | _   | ns   |
| Turn-Off Delay Time             | t <sub>d(off)</sub> |                                                                                                                                  | -   | 315  | _   | 1    |
| Rise Time                       | t <sub>r</sub>      | -                                                                                                                                | -   | 27.1 | _   | 1    |
| Fall Time                       | t <sub>f</sub>      | -                                                                                                                                | -   | 384  | _   | 1    |
| Turn-On Switching Loss          | E <sub>on</sub>     | -                                                                                                                                | -   | 0.78 | _   | mJ   |
| Turn-Off Switching Loss         | E <sub>off</sub>    | -                                                                                                                                | -   | 1.6  | _   | 1    |
| Total Switching Loss            | E <sub>ts</sub>     |                                                                                                                                  | -   | 2.38 | _   | 1    |
| Turn-On Delay Time              | t <sub>d(on)</sub>  | V <sub>CE</sub> = 600 V, V <sub>GE</sub> = 0/15 V,                                                                               | -   | 42.2 | _   | ns   |
| Turn-Off Delay Time             | t <sub>d(off)</sub> | $I_C = 25 \text{ A}, R_G = 4.7 \Omega, T_J = 175^{\circ}\text{C}$                                                                | -   | 235  | _   | 1    |
| Rise Time                       | t <sub>r</sub>      | -                                                                                                                                | -   | 46.5 | _   | 1    |
| Fall Time                       | t <sub>f</sub>      | -                                                                                                                                | -   | 242  | _   | 1    |
| Turn-On Switching Loss          | E <sub>on</sub>     | -                                                                                                                                | -   | 2.23 | _   | mJ   |
| Turn-Off Switching Loss         | E <sub>off</sub>    | -                                                                                                                                | -   | 1.9  | _   | 1    |
| Total Switching Loss            | E <sub>ts</sub>     | -                                                                                                                                | -   | 4.14 | _   | 1    |
| DIODE CHARACTERISTICS           |                     |                                                                                                                                  |     |      |     |      |
| Diode Forward Voltage           | V <sub>F</sub>      | I <sub>F</sub> = 25 A, T <sub>J</sub> = 25°C                                                                                     | -   | 1.7  | 2.0 | V    |
|                                 |                     | I <sub>F</sub> = 25 A, T <sub>J</sub> = 175°C                                                                                    | -   | 1.67 | _   | 1    |
| DIODE SWITCHING CHARACTERISTIC  | , INDUCTIVE LOA     | D                                                                                                                                |     |      |     |      |
| Reverse Recovery Time           | t <sub>rr</sub>     | $V_R = 600 \text{ V, } I_F = 12.5 \text{ A,}$<br>$dI_F/dt = 500 \text{ A/}\mu\text{s, } T_J = 25^{\circ}\text{C}$                | -   | 133  | _   | ns   |
| Reverse Recovery Charge         | Q <sub>rr</sub>     |                                                                                                                                  | -   | 1179 | _   | nC   |
| Reverse Recovery Energy         | E <sub>rec</sub>    |                                                                                                                                  | -   | 0.39 | _   | mJ   |
| Peak Reverse Recovery Current   | I <sub>RRM</sub>    |                                                                                                                                  | -   | 22.1 | -   | Α    |
| Reverse Recovery Time           | t <sub>rr</sub>     | V <sub>R</sub> = 600 V, I <sub>F</sub> = 25 A,                                                                                   | -   | 173  | -   | ns   |
| Reverse Recovery Charge         | Q <sub>rr</sub>     | $dI_F/dt = 500 \text{ A/}\mu\text{s}, T_J = 25^{\circ}\text{C}$                                                                  | -   | 2136 | -   | nC   |
| Reverse Recovery Energy         | E <sub>rec</sub>    |                                                                                                                                  | -   | 0.65 | -   | mJ   |
| Peak Reverse Recovery Current   | I <sub>RRM</sub>    |                                                                                                                                  | -   | 28.4 | -   | Α    |
| Reverse Recovery Time           | t <sub>rr</sub>     | V <sub>R</sub> = 600 V, I <sub>F</sub> = 12.5 A,                                                                                 | -   | 180  | _   | ns   |
| Reverse Recovery Charge         | Q <sub>rr</sub>     | dl <sub>F</sub> /dt = 500 A/μs, T <sub>J</sub> = 175°C                                                                           | -   | 1775 | _   | nC   |
| Reverse Recovery Energy         | E <sub>rec</sub>    |                                                                                                                                  | -   | 0.67 | _   | mJ   |
| Peak Reverse Recovery Current   | I <sub>RRM</sub>    |                                                                                                                                  | -   | 24.5 | -   | Α    |
| Reverse Recovery Time           | t <sub>rr</sub>     | V <sub>R</sub> = 600 V, I <sub>F</sub> = 25 A,                                                                                   | -   | 229  | -   | ns   |
| Reverse Recovery Charge         | Q <sub>rr</sub>     | dI <sub>F</sub> /dt = 500 A/μs, T <sub>J</sub> = 175°C                                                                           | _   | 3383 | _   | nC   |
| Reverse Recovery Energy         | E <sub>rec</sub>    |                                                                                                                                  | _   | 1.16 | _   | mJ   |
| Peak Reverse Recovery Current   | I <sub>RRM</sub>    | 1                                                                                                                                | _   | 34   | -   | Α    |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

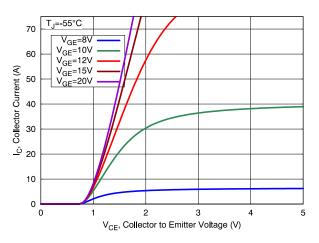



Figure 1. Output Characteristics

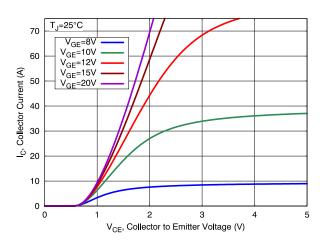



Figure 2. Output Characteristics

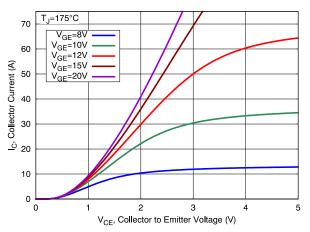



Figure 3. Output Characteristics

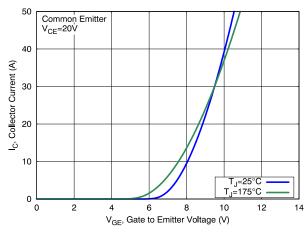



Figure 4. Transfer Characteristics

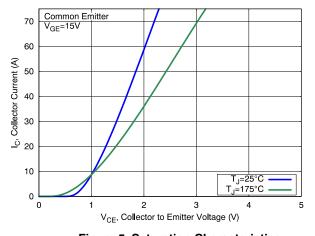



Figure 5. Saturation Characteristics

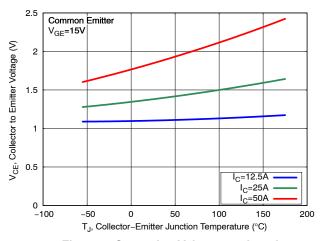



Figure 6. Saturation Voltage vs. Junction Temperature

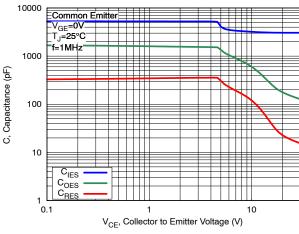



Figure 7. Capacitance Characteristics

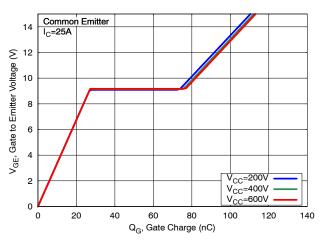



Figure 8. Gate Charge Characteristics

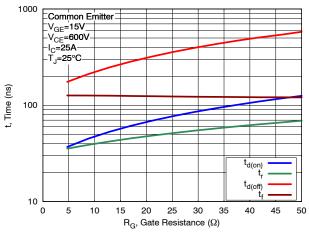



Figure 9. Switching Time vs Gate Resistance

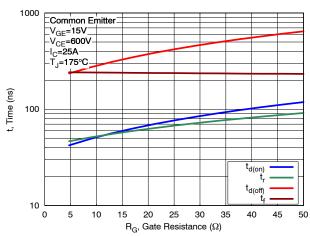



Figure 10. Switching Time vs Gate Resistance

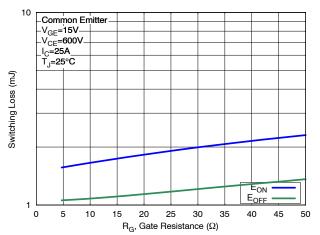



Figure 11. Switching Loss vs Gate Resistance

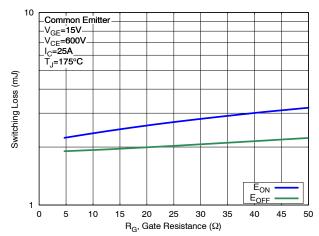



Figure 12. Switching Loss vs Gate Resistance

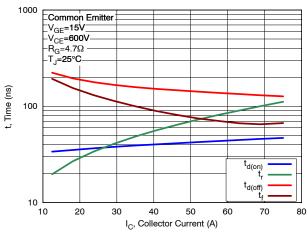



Figure 13. Switching Time vs Collector Current

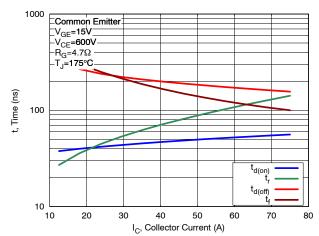



Figure 14. Switching Time vs Collector Current

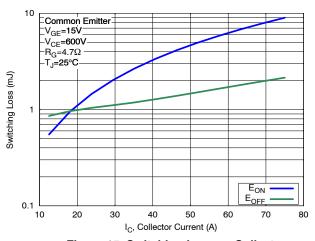



Figure 15. Switching Loss vs Collector Current

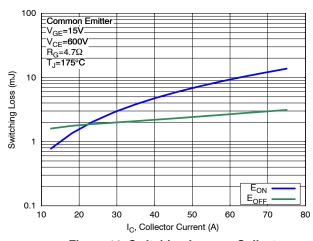



Figure 16. Switching Loss vs Collector Current

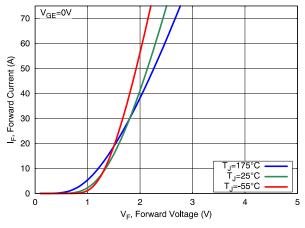



Figure 17. Diode Forward Characteristics

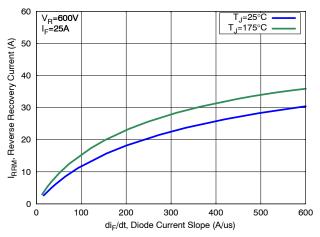
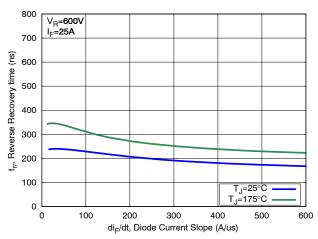




Figure 18. Diode Reverse Recovery Current



8000 V<sub>R</sub>=600V I<sub>F</sub>=25A 7000 Reverse Recovery Charge (nC) 6000 5000 4000 3000 2000 ď 1000 T<sub>J</sub>=25°C T<sub>J</sub>=175°C 0 0 100 300 400 600 di<sub>F</sub>/dt, Diode Current Slope (A/us)

Figure 19. Diode Reverse Recovery Current

Figure 20. Diode Stored Charge Characteristics

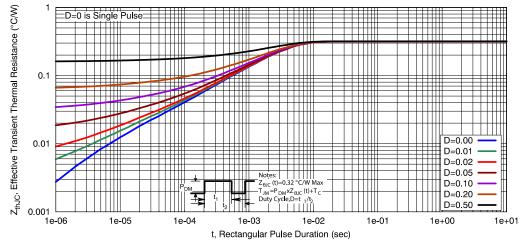



Figure 21. Transient Thermal Impedance of IGBT

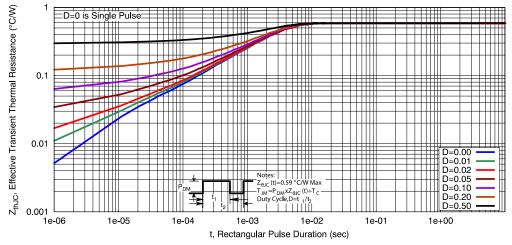
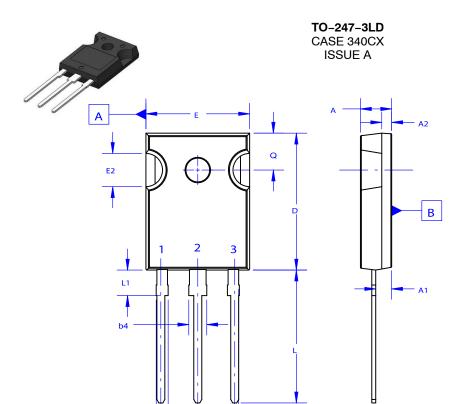




Figure 22. Transient Thermal Impedance of Diode

#### **PACKAGE DIMENSIONS**



NOTES: UNLESS OTHERWISE SPECIFIED.

(2X) b2

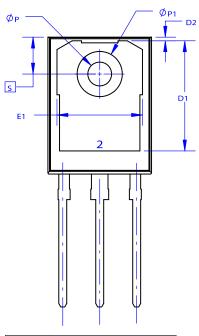
(2X) e

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.

 $\oplus$  0.25 M

E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.


# GENERIC MARKING DIAGRAM\*




XXXXX = Specific Device Code A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.





|     | MIL   | MILLIMETERS |       |  |  |
|-----|-------|-------------|-------|--|--|
| DIM | MIN   | NOM         | MAX   |  |  |
| Α   | 4.58  | 4.70        | 4.82  |  |  |
| A1  | 2.20  | 2.40        | 2.60  |  |  |
| A2  | 1.40  | 1.50        | 1.60  |  |  |
| D   | 20.32 | 20.57       | 20.82 |  |  |
| Е   | 15.37 | 15.62       | 15.87 |  |  |
| E2  | 4.96  | 5.08        | 5.20  |  |  |
| е   | ~     | 5.56        | ~     |  |  |
| L   | 19.75 | 20.00       | 20.25 |  |  |
| L1  | 3.69  | 3.81        | 3.93  |  |  |
| ØΡ  | 3.51  | 3.58        | 3.65  |  |  |
| Q   | 5.34  | 5.46        | 5.58  |  |  |
| S   | 5.34  | 5.46        | 5.58  |  |  |
| b   | 1.17  | 1.26        | 1.35  |  |  |
| b2  | 1.53  | 1.65        | 1.77  |  |  |
| b4  | 2.42  | 2.54        | 2.66  |  |  |
| С   | 0.51  | 0.61        | 0.71  |  |  |
| D1  | 13.08 | ~           | ~     |  |  |
| D2  | 0.51  | 0.93        | 1.35  |  |  |
| E1  | 12.81 | ~           | ~     |  |  |
| ØP1 | 6.60  | 6.80        | 7.00  |  |  |

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should

#### ADDITIONAL INFORMATION

**TECHNICAL PUBLICATIONS:** 

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales